Suppr超能文献

去除人类和啮齿动物大脑中氧化性DNA损伤的DNA糖基化酶广泛分布。

Widespread distribution of DNA glycosylases removing oxidative DNA lesions in human and rodent brains.

作者信息

Rolseth Veslemøy, Rundén-Pran Elise, Luna Luisa, McMurray Cynthia, Bjørås Magnar, Ottersen Ole Petter

机构信息

Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, University of Oslo, Rikshospitalet HF, Oslo, Norway.

出版信息

DNA Repair (Amst). 2008 Sep 1;7(9):1578-88. doi: 10.1016/j.dnarep.2008.06.007. Epub 2008 Jul 22.

Abstract

High metabolic activity and low levels of antioxidant enzymes make neurons particularly prone to damage by reactive oxygen species. Thus, repair of oxidative DNA damage is essential for normal brain function. Base excision repair is the major pathway for repair of oxidative DNA damage, and is initiated by DNA glycosylases recognizing and removing the damaged base. In mammalian cells at least five different DNA glycosylases with overlapping substrate specificity, NEIL1, NEIL2, NEIL3, OGG1 and NTH1, remove oxidative DNA base lesions. Here we report mRNA expression and distribution of these five DNA glycosylases in human and rodent brains using in situ hybridization and Northern blotting supported by glycosylase activity assays. NEIL1, NEIL2, OGG1 and NTH1 showed widespread expression at all ages. In situ hybridization studies in mouse brain showed that expression of mNeil1 increased with age. In newborn mouse brain, mNeil3 revealed a discrete expression pattern in brain regions known to harbour stem cell populations, i.e., the subventricular zone, the rostral migratory stream, and the hilar region of the hippocampal formation. Expression of mNeil3 decreased with age, and in old mice brains could be detected only in layer V of neocortex. MNth1 was constitutively expressed during lifespan. In Northern blots, mOgg1 expression showed a transient decrease followed by an increase after 8 weeks of age. Assays for faPy DNA glycosylase activity revealed increased activity level with age in all brain regions analyzed. The widespread but differential expression of the DNA glycosylases recognizing oxidative base lesions suggests distinct and age dependent roles of these enzymes in genome maintenance in brain. The distribution of mNeil3 is particularly intriguing and points to a specific role of this enzyme in stem cell differentiation.

摘要

高代谢活性和低水平的抗氧化酶使神经元特别容易受到活性氧的损伤。因此,氧化DNA损伤的修复对于正常脑功能至关重要。碱基切除修复是氧化DNA损伤修复的主要途径,由识别并去除受损碱基的DNA糖基化酶启动。在哺乳动物细胞中,至少有五种具有重叠底物特异性的不同DNA糖基化酶,即NEIL1、NEIL2、NEIL3、OGG1和NTH1,可去除氧化DNA碱基损伤。在此,我们通过原位杂交和Northern印迹法,并辅以糖基化酶活性测定,报告这五种DNA糖基化酶在人和啮齿动物大脑中的mRNA表达及分布情况。NEIL1、NEIL2、OGG1和NTH1在所有年龄段均广泛表达。对小鼠脑进行的原位杂交研究表明,mNeil1的表达随年龄增长而增加。在新生小鼠脑中,mNeil3在已知含有干细胞群体的脑区,即脑室下区、嘴侧迁移流和海马结构的齿状回门区,呈现离散的表达模式。mNeil3的表达随年龄下降,在老年小鼠脑中仅在新皮质第V层可检测到。MNth1在整个生命周期中持续表达。在Northern印迹中,mOgg1的表达在8周龄时短暂下降,随后上升。对faPy DNA糖基化酶活性的测定显示,在所有分析的脑区中,活性水平均随年龄增加。识别氧化碱基损伤的DNA糖基化酶的广泛但有差异的表达表明,这些酶在大脑基因组维持中具有不同的、依赖年龄的作用。mNeil3的分布特别引人关注,表明该酶在干细胞分化中具有特定作用。

相似文献

1
Widespread distribution of DNA glycosylases removing oxidative DNA lesions in human and rodent brains.
DNA Repair (Amst). 2008 Sep 1;7(9):1578-88. doi: 10.1016/j.dnarep.2008.06.007. Epub 2008 Jul 22.
4
The novel DNA glycosylase, NEIL1, protects mammalian cells from radiation-mediated cell death.
DNA Repair (Amst). 2003 May 13;2(5):581-91. doi: 10.1016/s1568-7864(03)00025-9.
6
NEIL1 excises 3' end proximal oxidative DNA lesions resistant to cleavage by NTH1 and OGG1.
Nucleic Acids Res. 2005 Aug 29;33(15):4849-56. doi: 10.1093/nar/gki816. Print 2005.
7
Upregulation of mNEIL3 in Ogg1-null cells is a potential backup mechanism for 8-oxoG repair.
Mutagenesis. 2021 Nov 29;36(6):437-444. doi: 10.1093/mutage/geab038.
8
9
Induction of NEIL1 and NEIL2 DNA glycosylases in aniline-induced splenic toxicity.
Toxicol Appl Pharmacol. 2011 Feb 15;251(1):1-7. doi: 10.1016/j.taap.2010.12.001. Epub 2010 Dec 9.
10
Repair of formamidopyrimidines in DNA involves different glycosylases: role of the OGG1, NTH1, and NEIL1 enzymes.
J Biol Chem. 2005 Dec 9;280(49):40544-51. doi: 10.1074/jbc.M508772200. Epub 2005 Oct 11.

引用本文的文献

1
NEIL3 influences adult neurogenesis and behavioral pattern separation via WNT signaling.
Cell Mol Life Sci. 2025 Mar 4;82(1):101. doi: 10.1007/s00018-025-05629-5.
4
Biological Functions of the DNA Glycosylase NEIL3 and Its Role in Disease Progression Including Cancer.
Cancers (Basel). 2022 Nov 22;14(23):5722. doi: 10.3390/cancers14235722.
5
Activated or Impaired: An Overview of DNA Repair in Neurodegenerative Diseases.
Aging Dis. 2022 Jul 11;13(4):987-1004. doi: 10.14336/AD.2021.1212.
6
DNA repair enzyme NEIL3 enables a stable neural representation of space by shaping transcription in hippocampal neurons.
iScience. 2021 Nov 18;24(12):103470. doi: 10.1016/j.isci.2021.103470. eCollection 2021 Dec 17.
7
Impact of Oxidative DNA Damage and the Role of DNA Glycosylases in Neurological Dysfunction.
Int J Mol Sci. 2021 Nov 29;22(23):12924. doi: 10.3390/ijms222312924.
8
Upregulation of Nei-Like DNA Glycosylase 3 Predicts Poor Prognosis in Hepatocellular Carcinoma.
J Oncol. 2021 Oct 8;2021:1301671. doi: 10.1155/2021/1301671. eCollection 2021.
9
The multifaceted roles of DNA repair and replication proteins in aging and obesity.
DNA Repair (Amst). 2021 Mar;99:103049. doi: 10.1016/j.dnarep.2021.103049. Epub 2021 Jan 21.
10
Base Excision Repair in the Immune System: Small DNA Lesions With Big Consequences.
Front Immunol. 2020 May 29;11:1084. doi: 10.3389/fimmu.2020.01084. eCollection 2020.

本文引用的文献

1
Base excision repair activities in organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation.
DNA Repair (Amst). 2008 Jun 1;7(6):869-78. doi: 10.1016/j.dnarep.2008.02.009. Epub 2008 Apr 10.
2
Oxidative stress and neurotoxicity.
Chem Res Toxicol. 2008 Jan;21(1):172-88. doi: 10.1021/tx700210j. Epub 2007 Dec 4.
3
The human Werner syndrome protein stimulates repair of oxidative DNA base damage by the DNA glycosylase NEIL1.
J Biol Chem. 2007 Sep 7;282(36):26591-602. doi: 10.1074/jbc.M703343200. Epub 2007 Jul 3.
4
The current evidence for defective repair of oxidatively damaged DNA in Cockayne syndrome.
Free Radic Biol Med. 2007 Jul 15;43(2):165-77. doi: 10.1016/j.freeradbiomed.2007.04.001. Epub 2007 Apr 10.
5
Genome instability and DNA repair in brain, ageing and neurological disease.
Neuroscience. 2007 Apr 14;145(4):1183-6. doi: 10.1016/j.neuroscience.2007.03.015. Epub 2007 Apr 2.
6
Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship.
Neuroscience. 2007 Apr 14;145(4):1388-96. doi: 10.1016/j.neuroscience.2006.12.020. Epub 2007 Feb 1.
7
Amyotrophic lateral sclerosis: all roads lead to Rome.
J Neurochem. 2007 Jun;101(5):1153-60. doi: 10.1111/j.1471-4159.2006.04408.x. Epub 2007 Jan 23.
8
9
DNA repair in aging rat neurons.
Neuroscience. 2007 Apr 14;145(4):1330-40. doi: 10.1016/j.neuroscience.2006.09.032. Epub 2006 Dec 6.
10
DNA repair, mitochondria, and neurodegeneration.
Neuroscience. 2007 Apr 14;145(4):1318-29. doi: 10.1016/j.neuroscience.2006.08.061. Epub 2006 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验