Suppr超能文献

具备同步、独立多光子成像及实验激光微束功能的光学工作站。

Optical workstation with concurrent, independent multiphoton imaging and experimental laser microbeam capabilities.

作者信息

Wokosin David L, Squirrell Jayne M, Eliceiri Kevin W, White John G

机构信息

Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin 53706.

出版信息

Rev Sci Instrum. 2003 Jan;74(1):193-201. doi: 10.1063/1.1524716.

Abstract

Experimental laser microbeam techniques have become established tools for studying living specimens. A steerable, focused laser beam may be used for a variety of experimental manipulations such as laser microsurgery, optical trapping, localized photolysis of caged bioactive probes, and patterned photobleaching. Typically, purpose-designed experimental systems have been constructed for each of these applications. In order to assess the consequences of such experimental optical interventions, long-term, microscopic observation of the specimen is often required. Multiphoton excitation, because of its ability to obtain high-contrast images from deep within a specimen with minimal phototoxic effects, is a preferred technique for in vivo imaging. An optical workstation is described that combines the functionality of an experimental optical microbeam apparatus with a sensitive multiphoton imaging system designed for use with living specimens. Design considerations are discussed and examples of ongoing biological applications are presented. The integrated optical workstation concept offers advantages in terms of flexibility and versatility relative to systems implemented with separate imaging and experimental components.

摘要

实验性激光微束技术已成为研究活体标本的既定工具。可操纵的聚焦激光束可用于多种实验操作,如激光显微手术、光镊、笼状生物活性探针的局部光解以及图案化光漂白。通常,针对这些应用中的每一种都构建了专门设计的实验系统。为了评估此类实验性光学干预的后果,通常需要对标本进行长期的显微镜观察。由于多光子激发能够以最小的光毒性效应从标本深处获得高对比度图像,因此它是体内成像的首选技术。本文描述了一种光学工作站,它将实验性光学微束装置的功能与专为活体标本设计的灵敏多光子成像系统相结合。讨论了设计考量,并展示了正在进行的生物学应用实例。相对于由单独的成像和实验组件实现的系统,集成光学工作站概念在灵活性和通用性方面具有优势。

相似文献

2
Multiphoton microscopy in life sciences.
J Microsc. 2000 Nov;200(Pt 2):83-104. doi: 10.1046/j.1365-2818.2000.00738.x.
3
Two-photon microscopy of cells and tissue.
Circ Res. 2004 Dec 10;95(12):1154-66. doi: 10.1161/01.RES.0000150593.30324.42.
4
Use of near infrared femtosecond lasers as sub-micron radiation microbeam for cell DNA damage and repair studies.
Mutat Res. 2010 Apr-Jun;704(1-3):38-44. doi: 10.1016/j.mrrev.2010.01.003. Epub 2010 Jan 14.
5
Laser-induced radiation microbeam technology and simultaneous real-time fluorescence imaging in live cells.
Methods Enzymol. 2012;504:3-28. doi: 10.1016/B978-0-12-391857-4.00001-X.
6
Microbeam-integrated multiphoton imaging system.
Rev Sci Instrum. 2008 Dec;79(12):123707. doi: 10.1063/1.3043439.
8
Multimodal and non-linear optical microscopy applications in reproductive biology.
Microsc Res Tech. 2016 Jul;79(7):567-82. doi: 10.1002/jemt.22684. Epub 2016 May 24.
10
Optical microscopy in photosynthesis.
Photosynth Res. 2009 Nov-Dec;102(2-3):111-41. doi: 10.1007/s11120-009-9500-9. Epub 2009 Oct 23.

引用本文的文献

2
A novel bioreactor for combined magnetic resonance spectroscopy and optical imaging of metabolism in 3D cell cultures.
Magn Reson Med. 2019 May;81(5):3379-3391. doi: 10.1002/mrm.27644. Epub 2019 Jan 16.
4
Radiation Promptly Alters Cancer Live Cell Metabolic Fluxes: An In Vitro Demonstration.
Radiat Res. 2016 May;185(5):496-504. doi: 10.1667/RR14093.1. Epub 2016 Apr 29.
5
RhoA is down-regulated at cell-cell contacts via p190RhoGAP-B in response to tensional homeostasis.
Mol Biol Cell. 2013 Jun;24(11):1688-99, S1-3. doi: 10.1091/mbc.E12-05-0386. Epub 2013 Apr 3.
6
Nonlinear optical microscopy and ultrasound imaging of human cervical structure.
J Biomed Opt. 2013 Mar;18(3):031110. doi: 10.1117/1.JBO.18.3.031110.
8
Quantification of collagen organization and extracellular matrix factors within the healing ligament.
Microsc Microanal. 2011 Oct;17(5):779-87. doi: 10.1017/S1431927611011925. Epub 2011 Sep 13.
9
Integrated holographic system for all-optical manipulation of developing embryos.
Biomed Opt Express. 2011 Jun 1;2(6):1564-75. doi: 10.1364/BOE.2.001564. Epub 2011 May 16.
10
Multiphoton flow cytometry to assess intrinsic and extrinsic fluorescence in cellular aggregates: applications to stem cells.
Microsc Microanal. 2011 Aug;17(4):540-54. doi: 10.1017/S1431927610000280. Epub 2010 Aug 5.

本文引用的文献

1
Additive-pulse mode locking of a diode-pumped Nd:YLF laser.
Opt Lett. 1990 Nov 15;15(22):1303-5. doi: 10.1364/ol.15.001303.
3
Multiphoton stimulation of neurons.
J Neurobiol. 2002 Jun 5;51(3):237-47. doi: 10.1002/neu.10056.
4
Spindle dynamics and the role of gamma-tubulin in early Caenorhabditis elegans embryos.
Mol Biol Cell. 2001 Jun;12(6):1751-64. doi: 10.1091/mbc.12.6.1751.
7
Multiphoton microscopy in life sciences.
J Microsc. 2000 Nov;200(Pt 2):83-104. doi: 10.1046/j.1365-2818.2000.00738.x.
9
Two-photon imaging in living brain slices.
Methods. 1999 Jun;18(2):231-9, 181. doi: 10.1006/meth.1999.0776.
10
Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells.
Proc Natl Acad Sci U S A. 1999 May 25;96(11):6255-60. doi: 10.1073/pnas.96.11.6255.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验