Suppr超能文献

生命科学中的多光子显微镜技术。

Multiphoton microscopy in life sciences.

作者信息

König K

机构信息

Laser Microscopy Division, Institute of Anatomy II, Friedrich Schiller University, D-07740 Jena, Germany.

出版信息

J Microsc. 2000 Nov;200(Pt 2):83-104. doi: 10.1046/j.1365-2818.2000.00738.x.

Abstract

Near infrared (NIR) multiphoton microscopy is becoming a novel optical tool of choice for fluorescence imaging with high spatial and temporal resolution, diagnostics, photochemistry and nanoprocessing within living cells and tissues. Three-dimensional fluorescence imaging based on non-resonant two-photon or three-photon fluorophor excitation requires light intensities in the range of MW cm(-2) to GW cm(-2), which can be derived by diffraction limited focusing of continuous wave and pulsed NIR laser radiation. NIR lasers can be employed as the excitation source for multifluorophor multiphoton excitation and hence multicolour imaging. In combination with fluorescence in situ hybridization (FISH), this novel approach can be used for multi-gene detection (multiphoton multicolour FISH). Owing to the high NIR penetration depth, non-invasive optical biopsies can be obtained from patients and ex vivo tissue by morphological and functional fluorescence imaging of endogenous fluorophores such as NAD(P)H, flavin, lipofuscin, porphyrins, collagen and elastin. Recent botanical applications of multiphoton microscopy include depth-resolved imaging of pigments (chlorophyll) and green fluorescent proteins as well as non-invasive fluorophore loading into single living plant cells. Non-destructive fluorescence imaging with multiphoton microscopes is limited to an optical window. Above certain intensities, multiphoton laser microscopy leads to impaired cellular reproduction, formation of giant cells, oxidative stress and apoptosis-like cell death. Major intracellular targets of photodamage in animal cells are mitochondria as well as the Golgi apparatus. The damage is most likely based on a two-photon excitation process rather than a one-photon or three-photon event. Picosecond and femtosecond laser microscopes therefore provide approximately the same safe relative optical window for two-photon vital cell studies. In labelled cells, additional phototoxic effects may occur via photodynamic action. This has been demonstrated for aminolevulinic acid-induced protoporphyrin IX and other porphyrin sensitizers in cells. When the light intensity in NIR microscopes is increased to TW cm(-2) levels, highly localized optical breakdown and plasma formation do occur. These femtosecond NIR laser microscopes can also be used as novel ultraprecise nanosurgical tools with cut sizes between 100 nm and 300 nm. Using the versatile nanoscalpel, intracellular dissection of chromosomes within living cells can be performed without perturbing the outer cell membrane. Moreover, cells remain alive. Non-invasive NIR laser surgery within a living cell or within an organelle is therefore possible.

摘要

近红外(NIR)多光子显微镜正成为一种新型光学工具,用于活细胞和组织内具有高空间和时间分辨率的荧光成像、诊断、光化学及纳米加工。基于非共振双光子或三光子荧光团激发的三维荧光成像需要兆瓦每平方厘米至吉瓦每平方厘米范围内的光强,这可通过连续波和脉冲近红外激光辐射的衍射极限聚焦获得。近红外激光可作为多荧光团多光子激发的激发源,从而实现多色成像。与荧光原位杂交(FISH)相结合,这种新方法可用于多基因检测(多光子多色FISH)。由于近红外光的穿透深度高,可通过对诸如NAD(P)H、黄素、脂褐素、卟啉、胶原蛋白和弹性蛋白等内源性荧光团进行形态和功能荧光成像,从患者和离体组织中获取非侵入性光学活检样本。多光子显微镜最近在植物学方面的应用包括对色素(叶绿素)和绿色荧光蛋白进行深度分辨成像,以及将荧光团非侵入性地加载到单个活植物细胞中。用多光子显微镜进行的非破坏性荧光成像局限于一个光学窗口。在超过一定强度时,多光子激光显微镜会导致细胞繁殖受损、巨细胞形成、氧化应激和凋亡样细胞死亡。动物细胞中光损伤的主要细胞内靶点是线粒体和高尔基体。这种损伤很可能基于双光子激发过程,而非单光子或三光子事件。因此,皮秒和飞秒激光显微镜为双光子活细胞研究提供了大致相同的安全相对光学窗口。在标记细胞中,可能会通过光动力作用产生额外的光毒性效应。这已在细胞中对氨基乙酰丙酸诱导的原卟啉IX和其他卟啉敏化剂得到证实。当近红外显微镜中的光强增加到太瓦每平方厘米水平时,确实会发生高度局部化的光学击穿和等离子体形成。这些飞秒近红外激光显微镜还可作为新型超精密纳米手术工具,切割尺寸在100纳米至300纳米之间。使用这种多功能纳米手术刀,可在不扰动细胞膜的情况下对活细胞内的染色体进行细胞内解剖。此外,细胞仍保持存活。因此,在活细胞或细胞器内进行非侵入性近红外激光手术是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验