Groenwold R H H, Hak E, Hoes A W
Julius Center for Health Sciences and Primary Care, University Medical center Utrecht, The Netherlands.
J Clin Epidemiol. 2009 Jan;62(1):22-8. doi: 10.1016/j.jclinepi.2008.02.011. Epub 2008 Jul 10.
In nonrandomized intervention studies unequal distribution of patient characteristics in the groups under study may hinder comparability of prognosis and therefore lead to confounding bias. Our objective was to review methods to control for observed confounding, as well as unobserved confounding
We reviewed epidemiologic literature on methods to control for observed and unobserved confounding.
Various methods are available to control for observed (i.e., measured) confounders, either in the design of data collection (i.e., matching, restriction), or in data analysis (i.e., multivariate analysis, propensity score analysis). Methods to quantify unobserved confounding can be categorized in methods with and without prior knowledge of the effect estimate. Without prior knowledge of the effect estimate, unobserved confounding can be quantified using different types of sensitivity analysis. When prior knowledge is available, the size of unobserved confounding can be estimated directly by comparison with prior knowledge.
Unobserved confounding should be addressed in a quantitative way to value the inferences of nonrandomized intervention studies.
在非随机干预研究中,研究组间患者特征分布不均可能会妨碍预后的可比性,从而导致混杂偏倚。我们的目的是综述控制观察到的混杂因素以及未观察到的混杂因素的方法。
我们综述了关于控制观察到的和未观察到的混杂因素方法的流行病学文献。
有多种方法可用于控制观察到的(即测量到的)混杂因素,要么在数据收集设计中(即匹配、限制),要么在数据分析中(即多变量分析、倾向评分分析)。量化未观察到的混杂因素的方法可分为有和没有效应估计先验知识的方法。在没有效应估计先验知识的情况下,未观察到的混杂因素可使用不同类型的敏感性分析进行量化。当有先验知识时,未观察到的混杂因素的大小可通过与先验知识比较直接估计。
应采用定量方法处理未观察到的混杂因素,以评估非随机干预研究的推断。