Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom.
School of Clinical Sciences, University of Bristol, Bristol, United Kingdom.
Am J Epidemiol. 2018 Oct 1;187(10):2252-2262. doi: 10.1093/aje/kwy121.
Tools that provide personalized risk prediction of outcomes after surgical procedures help patients make preference-based decisions among the available treatment options. However, it is unclear which modeling approach provides the most accurate risk estimation. We constructed and compared several parametric and nonparametric models for predicting prosthesis survivorship after knee replacement surgery for osteoarthritis. We used 430,455 patient-procedure episodes between April 2003 and September 2015 from the National Joint Registry for England, Wales, Northern Ireland, and the Isle of Man. The flexible parametric survival and random survival forest models most accurately captured the observed probability of remaining event-free. The concordance index for the flexible parametric model was the highest (0.705, 95% confidence interval (CI): 0.702, 0.707) for total knee replacement and was 0.639 (95% CI: 0.634, 0.643) for unicondylar knee replacement and 0.589 (95% CI: 0.586, 0.592) for patellofemoral replacement. The observed-to-predicted ratios for both the flexible parametric and the random survival forest approaches indicated that models tended to underestimate the risks for most risk groups. Our results show that the flexible parametric model has a better overall performance compared with other tested parametric methods and has better discrimination compared with the random survival forest approach.
工具可以为手术治疗效果提供个性化的风险预测,帮助患者在可供选择的治疗方案中做出基于偏好的决策。然而,哪种建模方法能提供最准确的风险估计尚不清楚。我们构建并比较了几种用于预测骨关节炎膝关节置换术后假体存活率的参数和非参数模型。我们使用了 2003 年 4 月至 2015 年 9 月来自英格兰、威尔士、北爱尔兰和马恩岛的国家联合登记处的 430455 例患者-手术例数。灵活参数生存和随机生存森林模型最准确地捕捉到了观察到的无事件生存率。对于全膝关节置换术,灵活参数模型的一致性指数最高(0.705,95%置信区间[CI]:0.702,0.707),对于单髁膝关节置换术为 0.639(95%CI:0.634,0.643),对于髌股关节置换术为 0.589(95%CI:0.586,0.592)。灵活参数和随机生存森林两种方法的观测值与预测值的比值表明,模型往往低估了大多数风险群体的风险。我们的研究结果表明,与其他测试的参数方法相比,灵活参数模型具有更好的整体性能,与随机生存森林方法相比,具有更好的区分能力。