Suppr超能文献

三维支架的微观结构通过连接相互作用影响细胞迁移行为。

Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions.

作者信息

Harley Brendan A C, Kim Hyung-Do, Zaman Muhammad H, Yannas Ioannis V, Lauffenburger Douglas A, Gibson Lorna J

机构信息

Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

出版信息

Biophys J. 2008 Oct;95(8):4013-24. doi: 10.1529/biophysj.107.122598. Epub 2008 Jul 11.

Abstract

Cell migration plays a critical role in a wide variety of physiological and pathological phenomena as well as in scaffold-based tissue engineering. Cell migration behavior is known to be governed by biochemical stimuli and cellular interactions. Biophysical processes associated with interactions between the cell and its surrounding extracellular matrix may also play a significant role in regulating migration. Although biophysical properties of two-dimensional substrates have been shown to significantly influence cell migration, elucidating factors governing migration in a three-dimensional environment is a relatively new avenue of research. Here, we investigate the effect of the three-dimensional microstructure, specifically the pore size and Young's modulus, of collagen-glycosaminoglycan scaffolds on the migratory behavior of individual mouse fibroblasts. We observe that the fibroblast migration, characterized by motile fraction as well as locomotion speed, decreases as scaffold pore size increases across a range from 90 to 150 mum. Directly testing the effects of varying strut Young's modulus on cell motility showed a biphasic relationship between cell speed and strut modulus and also indicated that mechanical factors were not responsible for the observed effect of scaffold pore size on cell motility. Instead, in-depth analysis of cell locomotion paths revealed that the distribution of junction points between scaffold struts strongly modulates motility. Strut junction interactions affect local directional persistence as well as cell speed at and away from the junctions, providing a new biophysical mechanism for the governance of cell motility by the extracellular microstructure.

摘要

细胞迁移在多种生理和病理现象以及基于支架的组织工程中都起着关键作用。已知细胞迁移行为受生化刺激和细胞间相互作用的支配。与细胞及其周围细胞外基质之间相互作用相关的生物物理过程在调节迁移中也可能发挥重要作用。尽管二维基质的生物物理特性已被证明会显著影响细胞迁移,但阐明三维环境中控制迁移的因素是一个相对较新的研究途径。在这里,我们研究了胶原蛋白 - 糖胺聚糖支架的三维微观结构,特别是孔径和杨氏模量,对单个小鼠成纤维细胞迁移行为的影响。我们观察到,以运动分数和移动速度为特征的成纤维细胞迁移,在支架孔径从90微米增加到150微米的范围内会随着孔径的增加而降低。直接测试不同支柱杨氏模量对细胞运动性的影响表明,细胞速度与支柱模量之间存在双相关系,并且还表明机械因素不是观察到的支架孔径对细胞运动性影响的原因。相反,对细胞移动路径的深入分析表明,支架支柱之间连接点的分布强烈调节运动性。支柱连接相互作用影响局部方向持续性以及在连接点处和远离连接点处的细胞速度,为细胞外微观结构控制细胞运动性提供了一种新的生物物理机制。

相似文献

1
Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions.
Biophys J. 2008 Oct;95(8):4013-24. doi: 10.1529/biophysj.107.122598. Epub 2008 Jul 11.
2
Effect of collagen-glycosaminoglycan scaffold pore size on matrix mineralization and cellular behavior in different cell types.
J Biomed Mater Res A. 2016 Jan;104(1):291-304. doi: 10.1002/jbm.a.35567. Epub 2015 Oct 1.
3
Characterization of mineralized collagen-glycosaminoglycan scaffolds for bone regeneration.
Acta Biomater. 2008 May;4(3):490-503. doi: 10.1016/j.actbio.2008.01.003. Epub 2008 Jan 26.
4
Cell contraction forces in scaffolds with varying pore size and cell density.
Biomaterials. 2010 Jun;31(18):4835-45. doi: 10.1016/j.biomaterials.2010.01.149. Epub 2010 Apr 2.
5
Mechanical characterization of collagen-glycosaminoglycan scaffolds.
Acta Biomater. 2007 Jul;3(4):463-74. doi: 10.1016/j.actbio.2006.12.009. Epub 2007 Mar 8.
6
Cell migration at the interface of a dual chemical-mechanical gradient.
ACS Appl Mater Interfaces. 2010 Aug;2(8):2317-24. doi: 10.1021/am100346k.
9
Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning.
Acta Biomater. 2010 Apr;6(4):1227-37. doi: 10.1016/j.actbio.2009.10.051. Epub 2009 Nov 1.
10
Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds.
Cell Adh Migr. 2010 Jul-Sep;4(3):377-81. doi: 10.4161/cam.4.3.11747.

引用本文的文献

1
Pre-Loading of Cells via Vapor Sublimation and the Deposition Polymerization Process with a 3D Porous Scaffold for Cell Cultures.
ACS Biomater Sci Eng. 2025 Aug 11;11(8):4941-4953. doi: 10.1021/acsbiomaterials.5c00439. Epub 2025 Jul 10.
2
Volumetric imaging of the 3D orientation of cellular structures with a polarized fluorescence light-sheet microscope.
Proc Natl Acad Sci U S A. 2025 Feb 25;122(8):e2406679122. doi: 10.1073/pnas.2406679122. Epub 2025 Feb 21.
3
Well-posedness of Keller-Segel systems on compact metric graphs.
J Evol Equ. 2025;25(1):7. doi: 10.1007/s00028-024-01033-x. Epub 2024 Dec 15.
7
Biological scaffold as potential platforms for stem cells: Current development and applications in wound healing.
World J Stem Cells. 2024 Apr 26;16(4):334-352. doi: 10.4252/wjsc.v16.i4.334.
8
Cellular Senescence Program is Sensitive to Physical Differences in Polymeric Tissue Scaffolds.
ACS Mater Au. 2023 Oct 6;4(1):35-44. doi: 10.1021/acsmaterialsau.3c00057. eCollection 2024 Jan 10.
9
Environmental stiffness restores mechanical homeostasis in vimentin-depleted cells.
Sci Rep. 2023 Oct 26;13(1):18374. doi: 10.1038/s41598-023-44835-8.

本文引用的文献

2
A new technique for calculating individual dermal fibroblast contractile forces generated within collagen-GAG scaffolds.
Biophys J. 2007 Oct 15;93(8):2911-22. doi: 10.1529/biophysj.106.095471. Epub 2007 Jun 22.
3
Mechanical characterization of collagen-glycosaminoglycan scaffolds.
Acta Biomater. 2007 Jul;3(4):463-74. doi: 10.1016/j.actbio.2006.12.009. Epub 2007 Mar 8.
4
Polymerizing actin fibers position integrins primed to probe for adhesion sites.
Science. 2007 Feb 16;315(5814):992-5. doi: 10.1126/science.1137904.
6
Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes.
Immunity. 2006 Dec;25(6):989-1001. doi: 10.1016/j.immuni.2006.10.011. Epub 2006 Nov 16.
7
Probing the microenvironment of mammary tumors using multiphoton microscopy.
J Mammary Gland Biol Neoplasia. 2006 Apr;11(2):151-63. doi: 10.1007/s10911-006-9021-5.
9
Matrix elasticity directs stem cell lineage specification.
Cell. 2006 Aug 25;126(4):677-89. doi: 10.1016/j.cell.2006.06.044.
10
Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis.
Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):10889-94. doi: 10.1073/pnas.0604460103. Epub 2006 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验