Lan Ya-Qian, Li Shun-Li, Shao Kui-Zhan, Wang Xin-Long, Su Zhong-Min
Institute of Functional Material Chemistry, Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China.
Dalton Trans. 2008 Aug 7(29):3824-35. doi: 10.1039/b802626b. Epub 2008 Jun 13.
Five POM-based hybrid materials have been designed and synthesized based on different metal ions under hydrothermal conditions, namely, Zn(Hfcz)(H(2)O)(3)(SiMo(12)O(40)).3H(2)O (1), Cd(2)(Hfcz)(6)(H(2)O)(2).H(2)O (2), Co(2)(Hfcz)(2)(SiW(12)O(40))(2)(SiW(12)O(40)).10H(2)O (3), Ni(2)(Hfcz)(4)(H(2)O)(2).5H(2)O (4) and [Ag(4)(Hfcz)(2)(SiMo(12)O(40))] (5), where Hfcz is fluconazole [2-(2,4-difluorophenyl)-1,3-di(1H-1,2,4-triazol-1-yl)propan-2-ol]. Their crystal structures have been determined by X-ray diffraction, elemental analyses, IR spectra, and thermogravimetric analyses (TGA). There are 1D mono and double chain-like metal-organic units in compounds 1 and 2, respectively. Polyoxometalates and metal-organic units co-crystallize through hydrogen bonds. In compound 3, metal-organic sheets are pillared by one kind of polyanion through covalent connections to generate a sandwich double-sheet. The other kind of polyanion acts as a counter-ion and lies in two adjacent sandwich double-sheets through non-covalent interactions. Polyanions covalently link metal-organic sheets to extend to an unusual 3D 5-connected framework with the (4(4).6(6)) topology in 4. In compound 5, polyanions link metal-organic chains to form a sheet through covalent connections. It is interesting that compound 5 shows an intricate (4,5,10)-connected framework with (4(4).6(2))(4)(4(8).6(2))(2)(4(14).6(19).8(12)) topology based on two kinds of Ag cations as four-connected and five-connected nodes, and polyanions as ten-connected nodes, when AgO interactions are considered. It represents the highest connected network topology presently known for polyoxometalate systems. The structural differences among 1-5 indicate the importance of different metal-organic units, coordination modes of polyanions for framework formation, and the interactions between polyanions and metal-organic units. In addition, the luminescent properties of compounds 1, 2 and 5, and electrochemical behaviours of compounds 1-5 have been investigated.
在水热条件下,基于不同金属离子设计并合成了五种基于多金属氧酸盐的杂化材料,即Zn(Hfcz)(H₂O)₃(SiMo₁₂O₄₀)·3H₂O (1)、Cd₂(Hfcz)₆(H₂O)₂·H₂O (2)、Co₂(Hfcz)₂(SiW₁₂O₄₀)₂(SiW₁₂O₄₀)·10H₂O (3)、Ni₂(Hfcz)₄(H₂O)₂·5H₂O (4) 和 [Ag₄(Hfcz)₂(SiMo₁₂O₄₀)] (5),其中Hfcz是氟康唑 [2-(2,4-二氟苯基)-1,3-二(1H-1,2,4-三唑-1-基)丙-2-醇]。通过X射线衍射、元素分析、红外光谱和热重分析 (TGA) 确定了它们的晶体结构。化合物1和2中分别存在一维单链和双链状金属有机单元。多金属氧酸盐和金属有机单元通过氢键共结晶。在化合物3中,金属有机层通过一种聚阴离子通过共价连接形成柱状结构,生成夹心双层结构。另一种聚阴离子作为抗衡离子,通过非共价相互作用位于两个相邻的夹心双层结构中。聚阴离子与金属有机层共价连接,扩展为具有 (4⁴·6⁶) 拓扑结构的非同寻常的三维5连接框架。在化合物5中,聚阴离子通过共价连接连接金属有机链形成层状结构。有趣的是,当考虑AgO相互作用时,化合物5基于两种作为四连接和五连接节点的Ag阳离子以及作为十连接节点的聚阴离子,显示出具有 (4,5,10)-连接框架和 (4⁴·6²)⁴(4⁸·6²)²(4¹⁴·6¹⁹·8¹²) 拓扑结构。它代表了目前已知的多金属氧酸盐体系中连接度最高的网络拓扑结构。1-5之间的结构差异表明不同金属有机单元、聚阴离子的配位模式对骨架形成的重要性以及聚阴离子与金属有机单元之间的相互作用。此外,还研究了化合物1、2和5的发光性质以及化合物1-5的电化学行为。