Laursen Lisbeth S, Ffrench-Constant Charles
MRC Centre for Regenerative Medicine and MS Society, Translational Research Initiative, Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, UK.
Neuron Glia Biol. 2007 Nov;3(4):367-75. doi: 10.1017/S1740925X08000161.
Myelination is necessary both for rapid salutatory conduction and the long-term survival of the axon. In the CNS the myelin sheath is formed by the oligodendrocytes. Each oligodendrocyte myelinates several axons and, as the number of wraps around each axon is determined precisely by the axon diameter, this requires a close, highly regulated interaction between the axons and each of the oligodendrocyte processes. Adhesion molecules are likely to play an important role in the bi-directional signalling between axon and oligodendrocyte that underlies this interaction. Here we review the current knowledge of the function of adhesion molecules in the different phases of oligodendrocyte differentiation and myelination, and discuss how the properties of these proteins defined by other cell biological systems indicates potential roles in oligodendrocytes. We show how the function of a number of different adhesion and cell-cell interaction molecules such as polysialic acid neural cell adhesion molecule, Lingo-1, Notch, neuregulin, integrins and extracellullar matrix proteins provide negative and positive signals that coordinate the formation of the myelin membrane. Compiling this information from a number of different cell biological and genetic experiments helps us to understand the pathology of multiple sclerosis and direct new areas of research that might eventually lead to potential drug targets to increase remyelination.
髓鞘形成对于轴突的快速跳跃式传导和长期存活都是必需的。在中枢神经系统中,髓鞘由少突胶质细胞形成。每个少突胶质细胞为多条轴突形成髓鞘,并且由于围绕每个轴突的缠绕层数精确地由轴突直径决定,这就需要轴突与每个少突胶质细胞突起之间进行紧密的、高度调控的相互作用。黏附分子可能在轴突与少突胶质细胞之间的双向信号传导中发挥重要作用,而这种信号传导是这种相互作用的基础。在这里,我们综述了黏附分子在少突胶质细胞分化和髓鞘形成不同阶段功能的当前知识,并讨论了由其他细胞生物学系统定义的这些蛋白质的特性如何表明其在少突胶质细胞中的潜在作用。我们展示了多种不同的黏附分子和细胞间相互作用分子,如多唾液酸神经细胞黏附分子、Lingo-1、Notch、神经调节蛋白、整合素和细胞外基质蛋白的功能如何提供正负信号来协调髓鞘膜的形成。从多个不同的细胞生物学和遗传学实验中汇编这些信息有助于我们理解多发性硬化症的病理学,并指导新的研究领域,这些领域最终可能会产生潜在的药物靶点以促进髓鞘再生。