Bechler Marie E, Byrne Lauren, Ffrench-Constant Charles
MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.
MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.
Curr Biol. 2015 Sep 21;25(18):2411-6. doi: 10.1016/j.cub.2015.07.056. Epub 2015 Aug 27.
Since Río-Hortega's description of oligodendrocyte morphologies nearly a century ago, many studies have observed myelin sheath-length diversity between CNS regions. Myelin sheath length directly impacts axonal conduction velocity by influencing the spacing between nodes of Ranvier. Such differences likely affect neural signal coordination and synchronization. What accounts for regional differences in myelin sheath lengths is unknown; are myelin sheath lengths determined solely by axons or do intrinsic properties of different oligodendrocyte precursor cell populations affect length? The prevailing view is that axons provide molecular cues necessary for oligodendrocyte myelination and appropriate sheath lengths. This view is based upon the observation that axon diameters correlate with myelin sheath length, as well as reports that PNS axonal neuregulin-1 type III regulates the initiation and properties of Schwann cell myelin sheaths. However, in the CNS, no such instructive molecules have been shown to be required, and increasing in vitro evidence supports an oligodendrocyte-driven, neuron-independent ability to differentiate and form initial sheaths. We test this alternative signal-independent hypothesis--that variation in internode lengths reflects regional oligodendrocyte-intrinsic properties. Using microfibers, we find that oligodendrocytes have a remarkable ability to self-regulate the formation of compact, multilamellar myelin and generate sheaths of physiological length. Our results show that oligodendrocytes respond to fiber diameters and that spinal cord oligodendrocytes generate longer sheaths than cortical oligodendrocytes on fibers, co-cultures, and explants, revealing that oligodendrocytes have regional identity and generate different sheath lengths that mirror internodes in vivo.
自从近一个世纪前里奥 - 奥尔特加对少突胶质细胞形态进行描述以来,许多研究已经观察到中枢神经系统(CNS)各区域之间髓鞘长度的多样性。髓鞘长度通过影响郎飞结之间的间距直接影响轴突传导速度。这种差异可能会影响神经信号的协调和同步。髓鞘长度的区域差异的原因尚不清楚;髓鞘长度是仅由轴突决定,还是不同少突胶质细胞前体细胞群的内在特性会影响长度?普遍的观点是轴突提供了少突胶质细胞髓鞘形成和合适的髓鞘长度所需的分子线索。这一观点基于轴突直径与髓鞘长度相关的观察结果,以及周围神经系统(PNS)轴突神经调节蛋白 -1 III型调节施万细胞髓鞘的起始和特性的报道。然而,在中枢神经系统中,尚未证明需要这样的指导分子,并且越来越多的体外证据支持少突胶质细胞驱动的、不依赖神经元的分化和形成初始髓鞘的能力。我们测试了这个替代性的非信号依赖假说——节间长度的变化反映了区域少突胶质细胞的内在特性。使用微纤维,我们发现少突胶质细胞具有显著的自我调节紧密多层髓鞘形成的能力,并能产生生理长度的髓鞘。我们的结果表明少突胶质细胞对纤维直径有反应,并且脊髓少突胶质细胞在纤维、共培养物和外植体上产生的髓鞘比皮质少突胶质细胞产生的更长,这表明少突胶质细胞具有区域特性,并产生不同长度的髓鞘,这与体内的节间情况相似。