Suppr超能文献

细菌光合作用中初级电荷分离的能量学与动力学

Energetics and kinetics of primary charge separation in bacterial photosynthesis.

作者信息

LeBard David N, Kapko Vitaliy, Matyushov Dmitry V

机构信息

Center for Biological Physics, Arizona State University, Tempe, AZ 85287-1604, USA.

出版信息

J Phys Chem B. 2008 Aug 21;112(33):10322-42. doi: 10.1021/jp8016503. Epub 2008 Jul 18.

Abstract

We report the results of molecular dynamics (MD) simulations and formal modeling of the free-energy surfaces and reaction rates of primary charge separation in the reaction center of Rhodobacter sphaeroides. Two simulation protocols were used to produce MD trajectories. Standard force-field potentials were employed in the first protocol. In the second protocol, the special pair was made polarizable to reproduce a high polarizability of its photoexcited state observed by Stark spectroscopy. The charge distribution between covalent and charge-transfer states of the special pair was dynamically adjusted during the simulation run. We found from both protocols that the breadth of electrostatic fluctuations of the protein/water environment far exceeds previous estimates, resulting in about 1.6 eV reorganization energy of electron transfer in the first protocol and 2.5 eV in the second protocol. Most of these electrostatic fluctuations become dynamically frozen on the time scale of primary charge separation, resulting in much smaller solvation contributions to the activation barrier. While water dominates solvation thermodynamics on long observation times, protein emerges as the major thermal bath coupled to electron transfer on the picosecond time of the reaction. Marcus parabolas were obtained for the free-energy surfaces of electron transfer by using the first protocol, while a highly asymmetric surface was obtained in the second protocol. A nonergodic formulation of the diffusion-reaction electron-transfer kinetics has allowed us to reproduce the experimental results for both the temperature dependence of the rate and the nonexponential decay of the population of the photoexcited special pair.

摘要

我们报告了对球形红细菌反应中心初级电荷分离的自由能表面和反应速率进行分子动力学(MD)模拟及形式建模的结果。使用了两种模拟方案来生成MD轨迹。在第一种方案中采用了标准力场势。在第二种方案中,特殊配对体被设为可极化的,以重现通过斯塔克光谱观察到的其光激发态的高极化率。在模拟运行期间,特殊配对体的共价态和电荷转移态之间的电荷分布会动态调整。我们从这两种方案中都发现,蛋白质/水环境的静电波动幅度远远超过先前的估计,在第一种方案中导致电子转移的重组能约为1.6电子伏特,在第二种方案中为2.5电子伏特。在初级电荷分离的时间尺度上,这些静电波动中的大多数会动态冻结,从而使溶剂化对活化能垒的贡献小得多。虽然在长时间观测中,水主导着溶剂化热力学,但在反应的皮秒时间尺度上,蛋白质成为与电子转移耦合的主要热库。通过使用第一种方案获得了电子转移自由能表面的马库斯抛物线,而在第二种方案中获得了高度不对称的表面。扩散 - 反应电子转移动力学中的非遍历公式使我们能够重现光激发特殊配对体的速率温度依赖性和种群非指数衰减的实验结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验