Suppr超能文献

在蓝细菌光系统 I 中 A 位醌还原反应中的倒位区域。

Inverted region in the reaction of the quinone reduction in the A-site of photosystem I from cyanobacteria.

机构信息

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991.

A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, bldg 40, Moscow, Russia, 119992.

出版信息

Photosynth Res. 2024 Mar;159(2-3):115-131. doi: 10.1007/s11120-023-01020-2. Epub 2023 Apr 24.

Abstract

Photosystem I from the menB strain of Synechocystis sp. PCC 6803 containing foreign quinones in the A sites was used for studying the primary steps of electron transfer by pump-probe femtosecond laser spectroscopy. The free energy gap (- ΔG) of electron transfer between the reduced primary acceptor A and the quinones bound in the A site varied from 0.12 eV for the low-potential 1,2-diamino-anthraquinone to 0.88 eV for the high-potential 2,3-dichloro-1,4-naphthoquinone, compared to 0.5 eV for the native phylloquinone. It was shown that the kinetics of charge separation between the special pair chlorophyll P and the primary acceptor A was not affected by quinone substitutions, whereas the rate of A → A electron transfer was sensitive to the redox-potential of quinones: the decrease of - ΔG by 400 meV compared to the native phylloquinone resulted in a ~ fivefold slowing of the reaction The presence of the asymmetric inverted region in the ΔG dependence of the reaction rate indicates that the electron transfer in photosystem I is controlled by nuclear tunneling and should be treated in terms of quantum electron-phonon interactions. A three-mode implementation of the multiphonon model, which includes modes around 240 cm (large-scale protein vibrations), 930 cm (out-of-plane bending of macrocycles and protein backbone vibrations), and 1600 cm (double bonds vibrations) was applied to rationalize the observed dependence. The modes with a frequency of at least 1600 cm make the predominant contribution to the reorganization energy, while the contribution of the "classical" low-frequency modes is only 4%.

摘要

来自集胞藻 PCC 6803 menB 株的光系统 I,其 A 位结合了外源醌,可用于通过泵浦探针飞秒激光光谱法研究电子转移的初始步骤。还原后的初级受体 A 与 A 位结合的醌之间的电子转移自由能差 (-ΔG) 变化范围从低电位的 1,2-二氨基蒽醌的 0.12eV 到高电位的 2,3-二氯-1,4-萘醌的 0.88eV,而天然类叶醌的为 0.5eV。结果表明,特殊对叶绿素 P 和初级受体 A 之间的电荷分离动力学不受醌取代的影响,而 A→A 电子转移的速率对醌的氧化还原电位敏感:与天然类叶醌相比,-ΔG 降低 400meV 导致反应速率降低约五倍。反应速率的 ΔG 依赖性中存在不对称反转区域表明,光系统 I 中的电子转移受核隧道控制,应根据量子电子-声子相互作用进行处理。应用三模式多声子模型来合理化观察到的依赖性,该模型包括 240cm(大尺度蛋白质振动)、930cm(大环和蛋白质骨架的面外弯曲振动)和 1600cm(双键振动)周围的模式。频率至少为 1600cm 的模式对重组能有主要贡献,而“经典”低频模式的贡献仅为 4%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验