Suppr超能文献

来自大肠杆菌的D-核糖-5-磷酸异构酶B也是一种功能性的D-阿洛糖-6-磷酸异构酶,而结核分枝杆菌的该酶则不是。

D-ribose-5-phosphate isomerase B from Escherichia coli is also a functional D-allose-6-phosphate isomerase, while the Mycobacterium tuberculosis enzyme is not.

作者信息

Roos Annette K, Mariano Sandrine, Kowalinski Eva, Salmon Laurent, Mowbray Sherry L

机构信息

Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden.

出版信息

J Mol Biol. 2008 Oct 10;382(3):667-79. doi: 10.1016/j.jmb.2008.06.090. Epub 2008 Jul 9.

Abstract

Interconversion of D-ribose-5-phosphate (R5P) and D-ribulose-5-phosphate is an important step in the pentose phosphate pathway. Two unrelated enzymes with R5P isomerase activity were first identified in Escherichia coli, RpiA and RpiB. In this organism, the essential 5-carbon sugars were thought to be processed by RpiA, while the primary role of RpiB was suggested to instead be interconversion of the rare 6-carbon sugars D-allose-6-phosphate (All6P) and D-allulose-6-phosphate. In Mycobacterium tuberculosis, where only an RpiB is found, the 5-carbon sugars are believed to be the enzyme's primary substrates. Here, we present kinetic studies examining the All6P isomerase activity of the RpiBs from these two organisms and show that only the E. coli enzyme can catalyze the reaction efficiently. All6P instead acts as an inhibitor of the M. tuberculosis enzyme in its action on R5P. X-ray studies of the M. tuberculosis enzyme co-crystallized with All6P and 5-deoxy-5-phospho-D-ribonohydroxamate (an inhibitor designed to mimic the 6-carbon sugar) and comparison with the E. coli enzyme's structure allowed us to identify differences in the active sites that explain the kinetic results. Two other structures, that of a mutant E. coli RpiB in which histidine 99 was changed to asparagine and that of wild-type M. tuberculosis enzyme, both co-crystallized with the substrate ribose-5-phosphate, shed additional light on the reaction mechanism of RpiBs generally.

摘要

D-核糖-5-磷酸(R5P)和D-核酮糖-5-磷酸的相互转化是磷酸戊糖途径中的重要一步。最初在大肠杆菌中鉴定出两种具有R5P异构酶活性的不相关酶,即RpiA和RpiB。在这种生物体中,必需的5碳糖被认为是由RpiA处理的,而RpiB的主要作用则被认为是罕见的6碳糖D-阿洛糖-6-磷酸(All6P)和D-阿洛酮糖-6-磷酸的相互转化。在仅发现RpiB的结核分枝杆菌中,5碳糖被认为是该酶的主要底物。在此,我们进行了动力学研究,检测了这两种生物体中RpiB的All6P异构酶活性,结果表明只有大肠杆菌的酶能够高效催化该反应。相反,All6P在其对R5P的作用中作为结核分枝杆菌酶的抑制剂。对与All6P和5-脱氧-5-磷酸-D-核糖异羟肟酸(一种设计用于模拟6碳糖的抑制剂)共结晶的结核分枝杆菌酶进行X射线研究,并与大肠杆菌酶的结构进行比较,使我们能够确定活性位点的差异,从而解释动力学结果。另外两个结构,即组氨酸99被替换为天冬酰胺的大肠杆菌RpiB突变体结构和野生型结核分枝杆菌酶的结构,二者均与底物核糖-5-磷酸共结晶,这为RpiB的一般反应机制提供了更多线索。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验