Mckeown Lynn, Burnham Matthew P, Hodson Charlotte, Jones Owen T
Faculty of Life Sciences, University of Manchester, Manchester M13 9PN, United Kingdom.
J Biol Chem. 2008 Oct 31;283(44):30421-32. doi: 10.1074/jbc.M708921200. Epub 2008 Jul 18.
The dynamic expression of voltage-gated potassium channels (Kvs) at the cell surface is a fundamental factor controlling membrane excitability. In exploring possible mechanisms controlling Kv surface expression, we identified a region in the extracellular linker between the first and second of the six (S1-S6) transmembrane-spanning domains of the Kv1.4 channel, which we hypothesized to be critical for its biogenesis. Using immunofluorescence microscopy, flow cytometry, patch clamp electrophysiology, and mutagenesis, we identified a single threonine residue at position 330 within the Kv1.4 S1-S2 linker that is absolutely required for cell surface expression. Mutation of Thr-330 to an alanine, aspartate, or lysine prevented surface expression. However, surface expression occurred upon co-expression of mutant and wild type Kv1.4 subunits or mutation of Thr-330 to a serine. Mutation of the corresponding residue (Thr-211) in Kv3.1 to alanine also caused intracellular retention, suggesting that the conserved threonine plays a generalized role in surface expression. In support of this idea, sequence comparisons showed conservation of the critical threonine in all Kv families and in organisms across the evolutionary spectrum. Based upon the Kv1.2 crystal structure, further mutagenesis, and the partial restoration of surface expression in an electrostatic T330K bridging mutant, we suggest that Thr-330 hydrogen bonds to equally conserved outer pore residues, which may include a glutamate at position 502 that is also critical for surface expression. We propose that Thr-330 serves to interlock the voltage-sensing and gating domains of adjacent monomers, thereby yielding a structure competent for the surface expression of functional tetramers.
电压门控钾通道(Kvs)在细胞表面的动态表达是控制膜兴奋性的一个基本因素。在探索控制Kv表面表达的可能机制时,我们在Kv1.4通道六个跨膜结构域(S1-S6)中第一个和第二个跨膜结构域之间的细胞外连接区中确定了一个区域,我们假设该区域对其生物合成至关重要。使用免疫荧光显微镜、流式细胞术、膜片钳电生理学和诱变技术,我们在Kv1.4 S1-S2连接区的330位确定了一个单一的苏氨酸残基,这是细胞表面表达绝对必需的。将Thr-330突变为丙氨酸、天冬氨酸或赖氨酸会阻止表面表达。然而,当突变体和野生型Kv1.4亚基共表达或将Thr-330突变为丝氨酸时,会出现表面表达。将Kv3.1中相应的残基(Thr-211)突变为丙氨酸也会导致细胞内滞留,这表明保守的苏氨酸在表面表达中起普遍作用。支持这一观点的是,序列比较显示在所有Kv家族以及整个进化谱系中的生物体中关键苏氨酸都是保守的。基于Kv1.2晶体结构、进一步的诱变以及静电T330K桥接突变体中表面表达的部分恢复,我们认为Thr-330与同样保守的孔外残基形成氢键,其中可能包括502位的谷氨酸,该谷氨酸对表面表达也至关重要。我们提出Thr-330用于使相邻单体的电压感应和门控结构域相互锁定,从而产生一个能够进行功能性四聚体表面表达的结构。