Suppr超能文献

Kv1.2 通道的独立和协同运动:电压感应和门控。

Independent and cooperative motions of the Kv1.2 channel: voltage sensing and gating.

机构信息

Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel.

出版信息

Biophys J. 2010 May 19;98(10):2179-88. doi: 10.1016/j.bpj.2010.01.049.

Abstract

Voltage-gated potassium (Kv) channels, such as Kv1.2, are involved in the generation and propagation of action potentials. The Kv channel is a homotetramer, and each monomer is composed of a voltage-sensing domain (VSD) and a pore domain (PD). We analyzed the fluctuations of a model structure of Kv1.2 using elastic network models. The analysis suggested a network of coupled fluctuations of eight rigid structural units and seven hinges that may control the transition between the active and inactive states of the channel. For the most part, the network is composed of amino acids that are known to affect channel activity. The results suggested allosteric interactions and cooperativity between the subunits in the coupling between the motion of the VSD and the selectivity filter of the PD, in accordance with recent empirical data. There are no direct contacts between the VSDs of the four subunits, and the contacts between these and the PDs are loose, suggesting that the VSDs are capable of functioning independently. Indeed, they manifest many inherent fluctuations that are decoupled from the rest of the structure. In general, the analysis suggests that the two domains contribute to the channel function both individually and cooperatively.

摘要

电压门控钾 (Kv) 通道,如 Kv1.2,参与动作电位的产生和传播。Kv 通道是同源四聚体,每个单体由电压感应域 (VSD) 和孔域 (PD) 组成。我们使用弹性网络模型分析了 Kv1.2 的模型结构的波动。该分析表明,八个刚性结构单元和七个铰链的波动网络可能控制通道的激活和失活状态之间的转变。在大多数情况下,该网络由已知影响通道活性的氨基酸组成。结果表明,在 VSD 运动和 PD 选择性过滤器之间的耦合中,亚基之间存在变构相互作用和协同作用,这与最近的经验数据一致。四个亚基的 VSD 之间没有直接接触,并且这些 VSD 与 PD 之间的接触是松散的,这表明 VSD 能够独立发挥作用。事实上,它们表现出许多与结构其余部分解耦的固有波动。总的来说,该分析表明两个结构域分别和协同作用为通道功能做出贡献。

相似文献

1
Independent and cooperative motions of the Kv1.2 channel: voltage sensing and gating.
Biophys J. 2010 May 19;98(10):2179-88. doi: 10.1016/j.bpj.2010.01.049.
2
Structure prediction for the down state of a potassium channel voltage sensor.
Nature. 2007 Feb 1;445(7127):550-3. doi: 10.1038/nature05494. Epub 2006 Dec 24.
3
Molecular mechanism for depolarization-induced modulation of Kv channel closure.
J Gen Physiol. 2012 Nov;140(5):481-93. doi: 10.1085/jgp.201210817. Epub 2012 Oct 15.
4
Moving gating charges through the gating pore in a Kv channel voltage sensor.
Proc Natl Acad Sci U S A. 2014 May 13;111(19):E1950-9. doi: 10.1073/pnas.1406161111. Epub 2014 Apr 29.
5
Dissecting the coupling between the voltage sensor and pore domains.
Neuron. 2006 Nov 22;52(4):568-9. doi: 10.1016/j.neuron.2006.11.002.
7
Mechanism of voltage gating in potassium channels.
Science. 2012 Apr 13;336(6078):229-33. doi: 10.1126/science.1216533.
8
Basis for allosteric open-state stabilization of voltage-gated potassium channels by intracellular cations.
J Gen Physiol. 2012 Nov;140(5):495-511. doi: 10.1085/jgp.201210823. Epub 2012 Oct 15.
9
Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel.
J Gen Physiol. 2015 Apr;145(4):345-58. doi: 10.1085/jgp.201411300. Epub 2015 Mar 16.
10
The glycosylation state of Kv1.2 potassium channels affects trafficking, gating, and simulated action potentials.
Brain Res. 2007 May 4;1144:1-18. doi: 10.1016/j.brainres.2007.01.092. Epub 2007 Jan 31.

引用本文的文献

1
Structure-Encoded Global Motions and Their Role in Mediating Protein-Substrate Interactions.
Biophys J. 2015 Sep 15;109(6):1101-9. doi: 10.1016/j.bpj.2015.06.004. Epub 2015 Jul 2.
2
Structure, dynamics and implied gating mechanism of a human cyclic nucleotide-gated channel.
PLoS Comput Biol. 2014 Dec 4;10(12):e1003976. doi: 10.1371/journal.pcbi.1003976. eCollection 2014 Dec.
3
Normal mode dynamics of voltage-gated K(+) channels: gating principle, opening mechanism, and inhibition.
J Comput Neurosci. 2015 Feb;38(1):83-8. doi: 10.1007/s10827-014-0527-3. Epub 2014 Sep 16.
5
Structure and flexibility of the C-ring in the electromotor of rotary F(0)F(1)-ATPase of pea chloroplasts.
PLoS One. 2012;7(9):e43045. doi: 10.1371/journal.pone.0043045. Epub 2012 Sep 25.
8
Dynamic allostery: linkers are not merely flexible.
Structure. 2011 Jul 13;19(7):907-17. doi: 10.1016/j.str.2011.06.002.

本文引用的文献

1
2
A single charged voltage sensor is capable of gating the Shaker K+ channel.
J Gen Physiol. 2009 May;133(5):467-83. doi: 10.1085/jgp.200810082.
4
Conformational changes and slow dynamics through microsecond polarized atomistic molecular simulation of an integral Kv1.2 ion channel.
PLoS Comput Biol. 2009 Feb;5(2):e1000289. doi: 10.1371/journal.pcbi.1000289. Epub 2009 Feb 20.
6
Cooperative transition between open and closed conformations in potassium channels.
PLoS Comput Biol. 2008 Aug 29;4(8):e1000164. doi: 10.1371/journal.pcbi.1000164.
7
Direct analysis of cooperativity in multisubunit allosteric proteins.
Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11697-702. doi: 10.1073/pnas.0804104105. Epub 2008 Aug 7.
9
Inferred motions of the S3a helix during voltage-dependent K+ channel gating.
J Mol Biol. 2008 Sep 5;381(3):569-80. doi: 10.1016/j.jmb.2008.06.010. Epub 2008 Jun 10.
10
Extent of voltage sensor movement during gating of shaker K+ channels.
Neuron. 2008 Jul 10;59(1):98-109. doi: 10.1016/j.neuron.2008.05.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验