Shem-Ad Tzilhav, Irit Orr, Yifrach Ofer
Department of Life Sciences and the Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
PLoS One. 2013 Dec 10;8(12):e82253. doi: 10.1371/journal.pone.0082253. eCollection 2013.
The tight electro-mechanical coupling between the voltage-sensing and pore domains of Kv channels lies at the heart of their fundamental roles in electrical signaling. Structural data have identified two voltage sensor pore inter-domain interaction surfaces, thus providing a framework to explain the molecular basis for the tight coupling of these domains. While the contribution of the intra-subunit lower domain interface to the electro-mechanical coupling that underlies channel opening is relatively well understood, the contribution of the inter-subunit upper interface to channel gating is not yet clear. Relying on energy perturbation and thermodynamic coupling analyses of tandem-dimeric Shaker Kv channels, we show that mutation of upper interface residues from both sides of the voltage sensor-pore domain interface stabilizes the closed channel state. These mutations, however, do not affect slow inactivation gating. We, moreover, find that upper interface residues form a network of state-dependent interactions that stabilize the open channel state. Finally, we note that the observed residue interaction network does not change during slow inactivation gating. The upper voltage sensing-pore interaction surface thus only undergoes conformational rearrangements during channel activation gating. We suggest that inter-subunit interactions across the upper domain interface mediate allosteric communication between channel subunits that contributes to the concerted nature of the late pore opening transition of Kv channels.
电压门控钾通道(Kv通道)的电压感应结构域与孔道结构域之间紧密的机电耦合作用,是其在电信号传导中发挥基本作用的核心所在。结构数据已确定了两个电压传感器-孔道结构域间的相互作用表面,从而为解释这些结构域紧密耦合的分子基础提供了一个框架。虽然亚基内较低结构域界面在通道开放所依赖的机电耦合中所起的作用已得到较好理解,但亚基间较高界面在通道门控中的作用尚不清楚。通过对串联二聚体Shaker Kv通道进行能量扰动和热力学耦合分析,我们发现电压传感器-孔道结构域界面两侧的较高界面残基发生突变会使通道的关闭状态更加稳定。然而,这些突变并不影响缓慢失活门控。此外,我们发现较高界面残基形成了一个依赖状态的相互作用网络,该网络可稳定通道的开放状态。最后,我们注意到在缓慢失活门控过程中,观察到的残基相互作用网络并未发生变化。因此,较高的电压感应-孔道相互作用表面仅在通道激活门控过程中发生构象重排。我们认为,跨较高结构域界面的亚基间相互作用介导了通道亚基间的变构通讯,这有助于Kv通道孔道开放后期转变的协同性质。