Hovorka Roman, Chassin Ludovic J, Ellmerer Martin, Plank Johannes, Wilinska Malgorzata E
Institute of Metabolic Science, Metabolic Research Laboratories, Level 4, Box 289, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK.
Physiol Meas. 2008 Aug;29(8):959-78. doi: 10.1088/0967-3334/29/8/008. Epub 2008 Jul 18.
Focused research is underway to improve the delivery of tight glycaemic control at the intensive care unit. A major component is the development of safe, efficacious and effective insulin titration algorithms, which are normally evaluated in time-consuming resource-demanding clinical studies. Simulation studies with virtual critically ill patients can substantially accelerate the development process. For this purpose, we created a model of glucoregulation in the critically ill. The model includes five submodels: a submodel of endogenous insulin secretion, a submodel of insulin kinetics, a submodel of enteral glucose absorption, a submodel of insulin action and a submodel of glucose kinetics. Model parameters are estimated utilizing prior knowledge and data collected routinely at the intensive care unit to represent the high intersubject and temporal variation in insulin needs in the critically ill. Bayesian estimation combined with the regularization method is used to estimate (i) time-invariant model parameters and (ii) a time-varying parameter, the basal insulin concentration, which represents the temporal variation in insulin sensitivity. We propose a validation process to validate virtual patients developed for the purpose of testing glucose controllers. The parameter estimation and the validation are exemplified using data collected in six critically ill patients treated at a medical intensive care unit. In conclusion, a novel glucoregulatory model has been developed to create a virtual population of critically ill facilitating in silico testing of glucose controllers at the intensive care unit.
目前正在进行针对性研究,以改善重症监护病房严格血糖控制的实施情况。一个主要组成部分是开发安全、有效且高效的胰岛素滴定算法,这些算法通常需要在耗时且资源需求大的临床研究中进行评估。利用虚拟重症患者进行模拟研究可以大幅加速开发进程。为此,我们创建了一个重症患者葡萄糖调节模型。该模型包括五个子模型:内源性胰岛素分泌子模型、胰岛素动力学子模型、肠内葡萄糖吸收子模型、胰岛素作用子模型和葡萄糖动力学子模型。利用先验知识和在重症监护病房常规收集的数据来估计模型参数,以体现重症患者胰岛素需求中受试者间和时间上的高度变异性。采用贝叶斯估计结合正则化方法来估计(i)时不变模型参数,以及(ii)一个随时间变化的参数——基础胰岛素浓度,它代表胰岛素敏感性的时间变化。我们提出了一个验证过程,用于验证为测试血糖控制器而开发的虚拟患者。使用在一家内科重症监护病房治疗的六名重症患者收集的数据对参数估计和验证进行了举例说明。总之,已开发出一种新型葡萄糖调节模型,以创建一个重症虚拟人群,便于在重症监护病房对血糖控制器进行计算机模拟测试。