Centre for Big Data Research in Health, UNSW Sydney, Sydney, NSW, Australia.
The George Institute for Global Health, UNSW Sydney, Sydney, NSW, Australia.
J Am Med Inform Assoc. 2021 Jul 30;28(8):1642-1650. doi: 10.1093/jamia/ocab060.
Glycemic control is an important component of critical care. We present a data-driven method for predicting intensive care unit (ICU) patient response to glycemic control protocols while accounting for patient heterogeneity and variations in care.
Using electronic medical records (EMRs) of 18 961 ICU admissions from the MIMIC-III dataset, including 318 574 blood glucose measurements, we train and validate a gradient boosted tree machine learning (ML) algorithm to forecast patient blood glucose and a 95% prediction interval at 2-hour intervals. The model uses as inputs irregular multivariate time series data relating to recent in-patient medical history and glycemic control, including previous blood glucose, nutrition, and insulin dosing.
Our forecasting model using routinely collected EMRs achieves performance comparable to previous models developed in planned research studies using continuous blood glucose monitoring. Model error, expressed as mean absolute percentage error is 16.5%-16.8%, with Clarke error grid analysis demonstrating that 97% of predictions would be clinically acceptable. The 95% prediction intervals achieve near intended coverage at 93%-94%.
ML algorithms built on observational data sources, such as EMRs, present a promising approach for personalization and automation of glycemic control in critical care. Future research may benefit from applying a combination of methodologies and data sources to develop robust methodologies that account for the variations seen in ICU patients and difficultly in detecting the extremes of observed blood glucose values.
We demonstrate that EMRs can be used to train ML algorithms that may be suitable for incorporation into ICU decision support systems.
血糖控制是重症监护的重要组成部分。我们提出了一种数据驱动的方法,用于预测重症监护病房(ICU)患者对血糖控制方案的反应,同时考虑到患者的异质性和护理中的变异性。
使用来自 MIMIC-III 数据集的 18961 例 ICU 入院的电子病历(EMR),包括 318574 次血糖测量值,我们训练和验证了一个梯度提升树机器学习(ML)算法,以预测患者的血糖和 95%的预测间隔在 2 小时间隔。该模型使用与近期住院病史和血糖控制相关的不规则多变量时间序列数据作为输入,包括先前的血糖、营养和胰岛素剂量。
我们使用常规收集的 EMR 进行预测的模型性能与使用连续血糖监测在计划性研究中开发的先前模型相当。以平均绝对百分比误差表示的模型误差为 16.5%-16.8%,Clarke 误差网格分析表明 97%的预测将是临床可接受的。95%的预测区间接近预期的 93%-94%。
基于观察性数据源(如 EMR)构建的 ML 算法为重症监护中的血糖控制个性化和自动化提供了一种很有前途的方法。未来的研究可能受益于应用多种方法和数据源来开发稳健的方法,以解释 ICU 患者中存在的变异性和难以检测到观察到的血糖值极端情况。
我们证明了 EMR 可用于训练 ML 算法,这些算法可能适合纳入 ICU 决策支持系统。