Duncan Caia D S, Weeks Kevin M
Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA.
Biochemistry. 2008 Aug 19;47(33):8504-13. doi: 10.1021/bi800207b. Epub 2008 Jul 22.
Most functional RNAs require proteins to facilitate formation of their active structures. In the case of the yeast bI3 group I intron, splicing requires binding by two proteins, the intron-encoded bI3 maturase and the nuclear encoded Mrs1. Here, we use selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry coupled with analysis of point mutants to map long-range interactions in this RNA. This analysis reveals two critical features of the free RNA state. First, the catalytic intron is separated from the flanking exons via a stable anchoring helix. This anchoring helix creates an autonomous structural domain for the intron and functions to prevent misfolding with the flanking exons. Second, the thermodynamically most stable structure for the free RNA is not consistent with the catalytically active conformation as phylogenetically conserved elements form stable, non-native structures. These results highlight a fragile bI3 RNA for which binding by protein cofactors functions to promote extensive secondary structure rearrangements that are an obligatory prerequisite for forming the catalytically active tertiary structure.
大多数功能性RNA需要蛋白质来促进其活性结构的形成。就酵母bI3组I内含子而言,剪接需要两种蛋白质结合,即内含子编码的bI3成熟酶和核编码的Mrs1。在这里,我们使用通过引物延伸分析的选择性2'-羟基酰化(SHAPE)化学方法,并结合点突变分析来绘制该RNA中的长程相互作用。该分析揭示了游离RNA状态的两个关键特征。首先,催化内含子通过稳定的锚定螺旋与侧翼外显子分离。这种锚定螺旋为内含子创造了一个自主的结构域,并起到防止与侧翼外显子错误折叠的作用。其次,游离RNA的热力学上最稳定的结构与催化活性构象不一致,因为系统发育保守元件形成了稳定的非天然结构。这些结果突出了一种脆弱的bI3 RNA,蛋白质辅因子的结合作用是促进广泛的二级结构重排,而这是形成催化活性三级结构的必要先决条件。