Suppr超能文献

对长程相互作用的SHAPE分析揭示了在一个脆弱的I组内含子RNA中存在广泛且热力学上更易发生的错误折叠。

SHAPE analysis of long-range interactions reveals extensive and thermodynamically preferred misfolding in a fragile group I intron RNA.

作者信息

Duncan Caia D S, Weeks Kevin M

机构信息

Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA.

出版信息

Biochemistry. 2008 Aug 19;47(33):8504-13. doi: 10.1021/bi800207b. Epub 2008 Jul 22.

Abstract

Most functional RNAs require proteins to facilitate formation of their active structures. In the case of the yeast bI3 group I intron, splicing requires binding by two proteins, the intron-encoded bI3 maturase and the nuclear encoded Mrs1. Here, we use selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry coupled with analysis of point mutants to map long-range interactions in this RNA. This analysis reveals two critical features of the free RNA state. First, the catalytic intron is separated from the flanking exons via a stable anchoring helix. This anchoring helix creates an autonomous structural domain for the intron and functions to prevent misfolding with the flanking exons. Second, the thermodynamically most stable structure for the free RNA is not consistent with the catalytically active conformation as phylogenetically conserved elements form stable, non-native structures. These results highlight a fragile bI3 RNA for which binding by protein cofactors functions to promote extensive secondary structure rearrangements that are an obligatory prerequisite for forming the catalytically active tertiary structure.

摘要

大多数功能性RNA需要蛋白质来促进其活性结构的形成。就酵母bI3组I内含子而言,剪接需要两种蛋白质结合,即内含子编码的bI3成熟酶和核编码的Mrs1。在这里,我们使用通过引物延伸分析的选择性2'-羟基酰化(SHAPE)化学方法,并结合点突变分析来绘制该RNA中的长程相互作用。该分析揭示了游离RNA状态的两个关键特征。首先,催化内含子通过稳定的锚定螺旋与侧翼外显子分离。这种锚定螺旋为内含子创造了一个自主的结构域,并起到防止与侧翼外显子错误折叠的作用。其次,游离RNA的热力学上最稳定的结构与催化活性构象不一致,因为系统发育保守元件形成了稳定的非天然结构。这些结果突出了一种脆弱的bI3 RNA,蛋白质辅因子的结合作用是促进广泛的二级结构重排,而这是形成催化活性三级结构的必要先决条件。

相似文献

2
The Mrs1 splicing factor binds the bI3 group I intron at each of two tetraloop-receptor motifs.
PLoS One. 2010 Feb 1;5(2):e8983. doi: 10.1371/journal.pone.0008983.
5
Recruitment of intron-encoded and co-opted proteins in splicing of the bI3 group I intron RNA.
Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):128-33. doi: 10.1073/pnas.012579299. Epub 2002 Jan 2.

引用本文的文献

3
Advances in RNA 3D Structure Modeling Using Experimental Data.
Front Genet. 2020 Oct 26;11:574485. doi: 10.3389/fgene.2020.574485. eCollection 2020.
5
Direct identification of base-paired RNA nucleotides by correlated chemical probing.
RNA. 2017 Jan;23(1):6-13. doi: 10.1261/rna.058586.116. Epub 2016 Nov 1.
8
Computational analysis of RNA structures with chemical probing data.
Methods. 2015 Jun;79-80:60-6. doi: 10.1016/j.ymeth.2015.02.003. Epub 2015 Feb 14.
9
Long-range architecture in a viral RNA genome.
Biochemistry. 2013 May 7;52(18):3182-90. doi: 10.1021/bi4001535. Epub 2013 Apr 25.

本文引用的文献

2
Structure of a tyrosyl-tRNA synthetase splicing factor bound to a group I intron RNA.
Nature. 2008 Jan 3;451(7174):94-7. doi: 10.1038/nature06413.
4
A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry.
J Am Chem Soc. 2007 Apr 11;129(14):4144-5. doi: 10.1021/ja0704028. Epub 2007 Mar 17.
5
Atomic level architecture of group I introns revealed.
Trends Biochem Sci. 2006 Jan;31(1):41-51. doi: 10.1016/j.tibs.2005.11.008. Epub 2005 Dec 13.
6
An assembly landscape for the 30S ribosomal subunit.
Nature. 2005 Dec 1;438(7068):628-32. doi: 10.1038/nature04261.
7
Evolution from DNA to RNA recognition by the bI3 LAGLIDADG maturase.
Nat Struct Mol Biol. 2005 Sep;12(9):779-87. doi: 10.1038/nsmb976. Epub 2005 Aug 21.
8
Structure and assembly of group I introns.
Curr Opin Struct Biol. 2005 Jun;15(3):324-30. doi: 10.1016/j.sbi.2005.05.007.
10
Structural basis for the self-chaperoning function of an RNA collapsed state.
Biochemistry. 2004 Dec 7;43(48):15179-86. doi: 10.1021/bi048626f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验