Suppr超能文献

膜中蛋白质-蛋白质相互作用的计算设计肽抑制剂

Computationally designed peptide inhibitors of protein-protein interactions in membranes.

作者信息

Caputo Gregory A, Litvinov Rustem I, Li Wei, Bennett Joel S, Degrado William F, Yin Hang

机构信息

Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA.

出版信息

Biochemistry. 2008 Aug 19;47(33):8600-6. doi: 10.1021/bi800687h. Epub 2008 Jul 22.

Abstract

We recently reported a computational method (CHAMP) for designing sequence-specific peptides that bind to the membrane-embedded portions of transmembrane proteins. We successfully applied this method to design membrane-spanning peptides targeting the transmembrane domains of the alpha IIb subunit of integrin alpha IIbbeta 3. Previously, we demonstrated that these CHAMP peptides bind specifically with reasonable affinity to isolated transmembrane helices of the targeted transmembrane region. These peptides also induced integrin alpha IIbbeta 3 activation due to disruption of the helix-helix interactions between the transmembrane domains of the alpha IIb and beta 3 subunits. In this paper, we show the direct interaction of the designed anti-alpha IIb CHAMP peptide with isolated full-length integrin alpha IIbbeta 3 in detergent micelles. Further, the behavior of the designed peptides in phospholipid bilayers is essentially identical to their behavior in detergent micelles. In particular, the peptides assume a membrane-spanning alpha-helical conformation that does not disrupt bilayer integrity. The activity and selectivity of the CHAMP peptides were further explored in platelets, comfirming that anti-alpha IIb activates wild-type alpha IIbbeta 3 in whole cells as a result of its disruption of the protein-protein interactions between the alpha and beta subunits in the transmembrane regions. These results demonstrate that CHAMP is a successful chemical biology approach that can provide specific tools for probing the transmembrane domains of proteins.

摘要

我们最近报道了一种用于设计与跨膜蛋白膜嵌入部分结合的序列特异性肽的计算方法(CHAMP)。我们成功地应用该方法设计了靶向整合素αIIbβ3的αIIb亚基跨膜结构域的跨膜肽。此前,我们证明这些CHAMP肽能以合理的亲和力与靶向跨膜区域的分离跨膜螺旋特异性结合。这些肽还由于破坏了αIIb和β3亚基跨膜结构域之间的螺旋-螺旋相互作用而诱导整合素αIIbβ3激活。在本文中,我们展示了设计的抗αIIb CHAMP肽与去污剂胶束中分离的全长整合素αIIbβ3的直接相互作用。此外,设计的肽在磷脂双层中的行为与其在去污剂胶束中的行为基本相同。特别是,这些肽呈现出一种不破坏双层完整性的跨膜α螺旋构象。在血小板中进一步探索了CHAMP肽的活性和选择性,证实抗αIIb由于破坏了跨膜区域α和β亚基之间的蛋白质-蛋白质相互作用而在全细胞中激活野生型αIIbβ3。这些结果表明,CHAMP是一种成功的化学生物学方法,可为探测蛋白质的跨膜结构域提供特定工具。

相似文献

1
Computationally designed peptide inhibitors of protein-protein interactions in membranes.
Biochemistry. 2008 Aug 19;47(33):8600-6. doi: 10.1021/bi800687h. Epub 2008 Jul 22.
2
Computational design of a β-peptide that targets transmembrane helices.
J Am Chem Soc. 2011 Aug 17;133(32):12378-81. doi: 10.1021/ja204215f. Epub 2011 Jul 22.
3
De novo designed transmembrane peptides activating the α5β1 integrin.
Protein Eng Des Sel. 2018 May 1;31(5):181-190. doi: 10.1093/protein/gzy014.
7
Molecular basis of CIB binding to the integrin alpha IIb cytoplasmic domain.
J Biol Chem. 2002 Aug 9;277(32):28877-83. doi: 10.1074/jbc.M202983200. Epub 2002 May 21.
9
Activation of platelet alphaIIbbeta3 by an exogenous peptide corresponding to the transmembrane domain of alphaIIb.
J Biol Chem. 2006 Dec 1;281(48):36732-41. doi: 10.1074/jbc.M605877200. Epub 2006 Oct 10.

引用本文的文献

1
Protein Design: From the Aspect of Water Solubility and Stability.
Chem Rev. 2022 Sep 28;122(18):14085-14179. doi: 10.1021/acs.chemrev.1c00757. Epub 2022 Aug 3.
2
Spiers Memorial Lecture: Analysis and design of membrane-interactive peptides.
Faraday Discuss. 2021 Dec 24;232(0):9-48. doi: 10.1039/d1fd00061f.
3
protein design, a retrospective.
Q Rev Biophys. 2020 Feb 11;53:e3. doi: 10.1017/S0033583519000131.
4
Membrane receptor activation mechanisms and transmembrane peptide tools to elucidate them.
J Biol Chem. 2020 Feb 14;295(7):1792-1814. doi: 10.1074/jbc.REV119.009457. Epub 2019 Dec 25.
5
De novo designed transmembrane peptides activating the α5β1 integrin.
Protein Eng Des Sel. 2018 May 1;31(5):181-190. doi: 10.1093/protein/gzy014.
6
Comparing side chain packing in soluble proteins, protein-protein interfaces, and transmembrane proteins.
Proteins. 2018 May;86(5):581-591. doi: 10.1002/prot.25479. Epub 2018 Feb 26.
7
Structural and biochemical differences between the Notch and the amyloid precursor protein transmembrane domains.
Sci Adv. 2017 Apr 12;3(4):e1602794. doi: 10.1126/sciadv.1602794. eCollection 2017 Apr.
8
Mechanistic Basis for the Binding of RGD- and AGDV-Peptides to the Platelet Integrin αIIbβ3.
Biochemistry. 2017 Apr 4;56(13):1932-1942. doi: 10.1021/acs.biochem.6b01113. Epub 2017 Mar 22.
9
Directly Activating the Integrin αIIbβ3 Initiates Outside-In Signaling by Causing αIIbβ3 Clustering.
J Biol Chem. 2016 May 27;291(22):11706-16. doi: 10.1074/jbc.M116.716613. Epub 2016 Apr 7.
10
Drugging Membrane Protein Interactions.
Annu Rev Biomed Eng. 2016 Jul 11;18:51-76. doi: 10.1146/annurev-bioeng-092115-025322. Epub 2016 Feb 5.

本文引用的文献

1
Exogenous agents that target transmembrane domains of proteins.
Angew Chem Int Ed Engl. 2008;47(15):2744-52. doi: 10.1002/anie.200704780.
2
Computational protein design: structure, function and combinatorial diversity.
Curr Opin Chem Biol. 2007 Jun;11(3):329-34. doi: 10.1016/j.cbpa.2007.05.006. Epub 2007 May 23.
3
Computational design of peptides that target transmembrane helices.
Science. 2007 Mar 30;315(5820):1817-22. doi: 10.1126/science.1136782.
4
Structural basis of integrin activation by talin.
Cell. 2007 Jan 12;128(1):171-82. doi: 10.1016/j.cell.2006.10.048.
5
Activation of platelet alphaIIbbeta3 by an exogenous peptide corresponding to the transmembrane domain of alphaIIb.
J Biol Chem. 2006 Dec 1;281(48):36732-41. doi: 10.1074/jbc.M605877200. Epub 2006 Oct 10.
6
Transmembrane glycine zippers: physiological and pathological roles in membrane proteins.
Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14278-83. doi: 10.1073/pnas.0501234102. Epub 2005 Sep 22.
8
D-enantiomer peptide of the TCRalpha transmembrane domain inhibits T-cell activation in vitro and in vivo.
FASEB J. 2005 Jul;19(9):1190-2. doi: 10.1096/fj.04-3498fje. Epub 2005 Apr 18.
9
Terphenyl-based helical mimetics that disrupt the p53/HDM2 interaction.
Angew Chem Int Ed Engl. 2005 Apr 29;44(18):2704-2707. doi: 10.1002/anie.200462316.
10
A push-pull mechanism for regulating integrin function.
Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1424-9. doi: 10.1073/pnas.0409334102. Epub 2005 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验