Câteau Hideyuki, Kitano Katsunori, Fukai Tomoki
Laboratory for Neural Circut Theory, RIKEN Brain Science Institute, 2-1 Hirowasa, Wako, Saitama 351-0198, Japan.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 1):051909. doi: 10.1103/PhysRevE.77.051909. Epub 2008 May 13.
A phase response curve (PRC) characterizes the signal transduction between oscillators such as neurons on a fixed network in a minimal manner, while spike-timing-dependent plasiticity (STDP) characterizes the way of rewiring networks in an activity-dependent manner. This paper demonstrates that these two key properties both related to the interaction times of oscillators work synergetically to carve functionally useful circuits. STDP working on neurons that prefer asynchrony converts the initial asynchronous firing to clustered firing with synchrony within a cluster. They get synchronized within a cluster despite their preference to asynchrony because STDP selectively disrupts intracluster connections, which we call wireless clustering. Our PRC analysis reveals a triad mechanism: the network structure affects how the PRC is read out to determine the synchrony tendency, the synchrony tendency affects how the STDP works, and STDP affects the network structure, closing the loop.
相位响应曲线(PRC)以最小的方式表征了诸如固定网络上的神经元等振荡器之间的信号转导,而尖峰时间依赖可塑性(STDP)则以活动依赖的方式表征了网络重新布线的方式。本文表明,这两个与振荡器相互作用时间相关的关键特性协同作用,以构建功能有用的电路。作用于偏好异步的神经元的STDP将初始的异步放电转换为簇内同步的簇状放电。尽管它们偏好异步,但它们在簇内实现了同步,因为STDP选择性地破坏了簇内连接,我们将其称为无线聚类。我们的PRC分析揭示了一种三元机制:网络结构影响PRC如何被解读以确定同步趋势,同步趋势影响STDP的工作方式,而STDP影响网络结构,从而形成闭环。