Aldegunde M, Seoane Natalia, García-Loureiro A J, Sushko P V, Shluger A L, Gavartin J L, Kalna K, Asenov A
Departamento de Electrónica y Computación, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 2):056702. doi: 10.1103/PhysRevE.77.056702. Epub 2008 May 8.
We present a methodology for the finite-element discretization of nanoscaled semiconductor devices with atomic resolution. The meshing strategy is based on the use of patterns to decompose the unit cell of the underlying crystallographic structures producing unstructured tetrahedral meshes. The unit cells of the bulk semiconductors and, more importantly, of the interfaces between the substrate and the gate dielectric have been extracted from classical molecular dynamics and density functional theory simulations. A Monte Carlo approach has been then used to place the dopants in nodes of the crystal, replacing silicon atoms. The thus created "atomistic" meshes are used to simulate an ensemble of microscopically different double-gate Si metal-oxide-semiconductor field-effect transistors and the transition region at the Si/SiO_{2} interface. In addition, a methodology to approximate amorphous dielectrics is also presented.
我们提出了一种用于具有原子分辨率的纳米级半导体器件的有限元离散化方法。网格划分策略基于使用模式来分解基础晶体结构的晶胞,从而生成非结构化四面体网格。体半导体的晶胞,更重要的是衬底与栅极电介质之间界面的晶胞,已从经典分子动力学和密度泛函理论模拟中提取。然后采用蒙特卡罗方法将掺杂剂放置在晶体节点中,取代硅原子。由此创建的“原子级”网格用于模拟微观上不同的双栅极硅金属氧化物半导体场效应晶体管以及Si/SiO₂ 界面处的过渡区域。此外,还提出了一种近似非晶电介质的方法。