Loskutov E M, Molkov Ya I, Mukhin D N, Feigin A M
Institute of Applied Physics, Russian Academy of Sciences, 46, Uljanov Street, Nizhniy Novgorod 603950, Russia.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jun;77(6 Pt 2):066214. doi: 10.1103/PhysRevE.77.066214. Epub 2008 Jun 23.
The impossibility to use the MCMC (Markov chain Monte Carlo) methods for long noisy chaotic time series (TS) (due to high computational complexity) is a serious limitation for reconstruction of dynamical systems (DSs). In particular, it does not allow one to use the universal Bayesian approach for reconstruction of a DS in the most interesting case of the unknown evolution operator of the system. We propose a technique that makes it possible to use the MCMC methods for Bayesian reconstruction of a DS from noisy chaotic TS of arbitrary long duration.
由于计算复杂度高,无法将马尔可夫链蒙特卡罗(MCMC)方法用于长的含噪声混沌时间序列(TS),这是动态系统(DS)重构的一个严重限制。特别是,在系统演化算子未知这个最有趣的情况下,它不允许人们使用通用的贝叶斯方法来重构DS。我们提出了一种技术,使得可以将MCMC方法用于从任意长时间的含噪声混沌TS中对DS进行贝叶斯重构。