Merkatas Christos, Kaloudis Konstantinos, Hatjispyros Spyridon J
Department of Mathematics, University of the Aegean, Karlovassi 83200, Greece.
Chaos. 2017 Jun;27(6):063116. doi: 10.1063/1.4990547.
We propose a Bayesian nonparametric mixture model for the reconstruction and prediction from observed time series data, of discretized stochastic dynamical systems, based on Markov Chain Monte Carlo methods. Our results can be used by researchers in physical modeling interested in a fast and accurate estimation of low dimensional stochastic models when the size of the observed time series is small and the noise process (perhaps) is non-Gaussian. The inference procedure is demonstrated specifically in the case of polynomial maps of an arbitrary degree and when a Geometric Stick Breaking mixture process prior over the space of densities, is applied to the additive errors. Our method is parsimonious compared to Bayesian nonparametric techniques based on Dirichlet process mixtures, flexible and general. Simulations based on synthetic time series are presented.
我们基于马尔可夫链蒙特卡罗方法,提出了一种贝叶斯非参数混合模型,用于从观测到的时间序列数据中重建和预测离散化的随机动力系统。当观测时间序列的规模较小且噪声过程(可能)是非高斯时,对物理建模感兴趣的研究人员可以使用我们的结果来快速准确地估计低维随机模型。在任意次数的多项式映射以及将密度空间上的几何折断棒混合过程先验应用于加性误差的情况下,具体展示了推理过程。与基于狄利克雷过程混合的贝叶斯非参数技术相比,我们的方法简洁、灵活且通用。我们还给出了基于合成时间序列的模拟结果。