Suppr超能文献

一种用于动态降噪的贝叶斯非参数方法。

A Bayesian nonparametric approach to dynamical noise reduction.

作者信息

Kaloudis Konstantinos, Hatjispyros Spyridon J

机构信息

Department of Mathematics, University of the Aegean, Karlovassi 83200, Greece.

出版信息

Chaos. 2018 Jun;28(6):063110. doi: 10.1063/1.5025545.

Abstract

We propose a Bayesian nonparametric approach for the noise reduction of a given chaotic time series contaminated by dynamical noise, based on Markov Chain Monte Carlo methods. The underlying unknown noise process (possibly) exhibits heavy tailed behavior. We introduce the Dynamic Noise Reduction Replicator model with which we reconstruct the unknown dynamic equations and in parallel we replicate the dynamics under reduced noise level dynamical perturbations. The dynamic noise reduction procedure is demonstrated specifically in the case of polynomial maps. Simulations based on synthetic time series are presented.

摘要

我们基于马尔可夫链蒙特卡罗方法,提出了一种贝叶斯非参数方法,用于对受动态噪声污染的给定混沌时间序列进行降噪处理。潜在的未知噪声过程(可能)呈现出重尾行为。我们引入了动态降噪复制器模型,利用该模型我们重建未知的动态方程,同时在降低噪声水平的动态扰动下复制动力学。动态降噪过程在多项式映射的情况下得到了具体演示。给出了基于合成时间序列的模拟结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验