Kaloudis Konstantinos, Hatjispyros Spyridon J
Department of Mathematics, University of the Aegean, Karlovassi 83200, Greece.
Chaos. 2018 Jun;28(6):063110. doi: 10.1063/1.5025545.
We propose a Bayesian nonparametric approach for the noise reduction of a given chaotic time series contaminated by dynamical noise, based on Markov Chain Monte Carlo methods. The underlying unknown noise process (possibly) exhibits heavy tailed behavior. We introduce the Dynamic Noise Reduction Replicator model with which we reconstruct the unknown dynamic equations and in parallel we replicate the dynamics under reduced noise level dynamical perturbations. The dynamic noise reduction procedure is demonstrated specifically in the case of polynomial maps. Simulations based on synthetic time series are presented.
我们基于马尔可夫链蒙特卡罗方法,提出了一种贝叶斯非参数方法,用于对受动态噪声污染的给定混沌时间序列进行降噪处理。潜在的未知噪声过程(可能)呈现出重尾行为。我们引入了动态降噪复制器模型,利用该模型我们重建未知的动态方程,同时在降低噪声水平的动态扰动下复制动力学。动态降噪过程在多项式映射的情况下得到了具体演示。给出了基于合成时间序列的模拟结果。