Suppr超能文献

用于在存在不确定性的情况下识别非线性系统的贝叶斯方法和马尔可夫链蒙特卡罗方法。

Bayesian and Markov chain Monte Carlo methods for identifying nonlinear systems in the presence of uncertainty.

作者信息

Green P L, Worden K

机构信息

Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK

Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2015 Sep 28;373(2051). doi: 10.1098/rsta.2014.0405.

Abstract

In this paper, the authors outline the general principles behind an approach to Bayesian system identification and highlight the benefits of adopting a Bayesian framework when attempting to identify models of nonlinear dynamical systems in the presence of uncertainty. It is then described how, through a summary of some key algorithms, many of the potential difficulties associated with a Bayesian approach can be overcome through the use of Markov chain Monte Carlo (MCMC) methods. The paper concludes with a case study, where an MCMC algorithm is used to facilitate the Bayesian system identification of a nonlinear dynamical system from experimentally observed acceleration time histories.

摘要

在本文中,作者概述了贝叶斯系统识别方法背后的一般原理,并强调了在存在不确定性的情况下尝试识别非线性动力系统模型时采用贝叶斯框架的好处。接着描述了如何通过总结一些关键算法,利用马尔可夫链蒙特卡罗(MCMC)方法克服与贝叶斯方法相关的许多潜在困难。本文最后给出了一个案例研究,其中使用MCMC算法从实验观测到的加速度时间历程中促进非线性动力系统的贝叶斯系统识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d518/4549940/337b7fa48ab9/rsta20140405-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验