Suppr超能文献

人类扫视眼动的运动处理

Motion processing for saccadic eye movements in humans.

作者信息

Gellman R S, Carl J R

机构信息

Department of Clinical Neurosciences, University of Calgary School of Medicine, Canada.

出版信息

Exp Brain Res. 1991;84(3):660-7. doi: 10.1007/BF00230979.

Abstract
  1. We studied the latencies and amplitudes of saccades to moving targets in normal human subjects. Targets underwent ramp or step-ramp motions. The goal was to determine how the saccadic system uses information about target velocity. 2. For simple ramp motion saccadic latency decreased as target speed increased. A threshold distance model, which assumes that the target has to move a minimum distance before saccadic processing starts, provided a good fit to the responses of all four subjects and explains discrepancies between previously published findings. 3. A double step experiment showed that target position may have some effect on saccadic amplitude when sampled approximately 70 ms before saccade onset, but it must be sampled at least 140 ms before onset for an accurate saccade to occur. 4. Saccades to simple ramp targets approximated the target position 55 ms before saccade onset. Based on our double step results, this is more compensation than possible by a simple position estimate and implies extrapolation of target motion by the saccadic system. The lack of complete compensation may be due to an underestimate of the target speed and/or of the saccadic latency. 5. A delayed-saccade paradigm resulted in saccades with a longer, constant latency and allowed longer viewing of target motion. These saccades accounted for all but approximately 20 ms of target motion, suggesting that with more processing time of target motion a better extrapolation may be generated. 6. In a step-ramp paradigm the target stepped in one direction, then moved smoothly in the opposite direction. Saccades in this paradigm could be made in either the direction of the step or in the direction of target motion: the direction and latency were determined solely by the time at which the target crossed the fixation point. This time must be calculated from target speed and position, implying that the saccadic system must use speed information to adjust latency or to cancel unnecessary saccades.
摘要
  1. 我们研究了正常人类受试者对移动目标的扫视潜伏期和幅度。目标进行斜坡或阶跃斜坡运动。目的是确定扫视系统如何利用目标速度信息。2. 对于简单的斜坡运动,扫视潜伏期随着目标速度的增加而缩短。一种阈值距离模型,该模型假设目标在扫视处理开始前必须移动最小距离,能够很好地拟合所有四名受试者的反应,并解释了先前发表的研究结果之间的差异。3. 一个双步实验表明,在扫视开始前约70毫秒采样时,目标位置可能对扫视幅度有一定影响,但必须在开始前至少140毫秒采样才能产生准确的扫视。4. 对简单斜坡目标的扫视在扫视开始前55毫秒接近目标位置。根据我们的双步实验结果,这比简单的位置估计所能实现的补偿更多,这意味着扫视系统对目标运动进行了外推。缺乏完全补偿可能是由于对目标速度和/或扫视潜伏期的低估。5. 延迟扫视范式导致扫视潜伏期更长且恒定,并允许更长时间观察目标运动。这些扫视几乎涵盖了目标运动的所有时间,但大约还有20毫秒除外,这表明随着对目标运动的处理时间增加,可能会产生更好的外推。6. 在阶跃斜坡范式中,目标先向一个方向步进,然后向相反方向平滑移动。在这种范式中,扫视可以朝步进方向或目标运动方向进行:方向和潜伏期仅由目标越过注视点的时间决定。这个时间必须根据目标速度和位置来计算,这意味着扫视系统必须利用速度信息来调整潜伏期或取消不必要的扫视。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验