Suppr超能文献

一种用于识别住院患者转至急性后护理机构出院风险的预测评分。

A predictive score to identify hospitalized patients' risk of discharge to a post-acute care facility.

作者信息

Louis Simonet Martine, Kossovsky Michel P, Chopard Pierre, Sigaud Philippe, Perneger Thomas V, Gaspoz Jean-Michel

机构信息

Service of General Internal Medicine, University Hospitals, Geneva, Switzerland.

出版信息

BMC Health Serv Res. 2008 Jul 22;8:154. doi: 10.1186/1472-6963-8-154.

Abstract

BACKGROUND

Early identification of patients who need post-acute care (PAC) may improve discharge planning. The purposes of the study were to develop and validate a score predicting discharge to a post-acute care (PAC) facility and to determine its best assessment time.

METHODS

We conducted a prospective study including 349 (derivation cohort) and 161 (validation cohort) consecutive patients in a general internal medicine service of a teaching hospital. We developed logistic regression models predicting discharge to a PAC facility, based on patient variables measured on admission (day 1) and on day 3. The value of each model was assessed by its area under the receiver operating characteristics curve (AUC). A simple numerical score was derived from the best model, and was validated in a separate cohort.

RESULTS

Prediction of discharge to a PAC facility was as accurate on day 1 (AUC: 0.81) as on day 3 (AUC: 0.82). The day-3 model was more parsimonious, with 5 variables: patient's partner inability to provide home help (4 pts); inability to self-manage drug regimen (4 pts); number of active medical problems on admission (1 pt per problem); dependency in bathing (4 pts) and in transfers from bed to chair (4 pts) on day 3. A score > or = 8 points predicted discharge to a PAC facility with a sensitivity of 87% and a specificity of 63%, and was significantly associated with inappropriate hospital days due to discharge delays. Internal and external validations confirmed these results.

CONCLUSION

A simple score computed on the 3rd hospital day predicted discharge to a PAC facility with good accuracy. A score > 8 points should prompt early discharge planning.

摘要

背景

早期识别需要急性后期护理(PAC)的患者可能会改善出院计划。本研究的目的是开发并验证一个预测出院至急性后期护理(PAC)机构的评分,并确定其最佳评估时间。

方法

我们进行了一项前瞻性研究,纳入了一家教学医院普通内科服务中的349例(推导队列)和161例(验证队列)连续患者。我们基于入院时(第1天)和第3天测量的患者变量,开发了预测出院至PAC机构的逻辑回归模型。每个模型的价值通过其受试者操作特征曲线下面积(AUC)进行评估。从最佳模型中得出一个简单的数字评分,并在一个单独的队列中进行验证。

结果

第1天预测出院至PAC机构的准确性(AUC:0.81)与第3天(AUC:0.82)相当。第3天的模型更简洁,有5个变量:患者的伴侣无法提供家庭帮助(4分);无法自我管理药物治疗方案(4分);入院时活跃的医疗问题数量(每个问题1分);第3天洗澡时的依赖性(4分)以及从床转移到椅子时的依赖性(4分)。评分≥8分预测出院至PAC机构的敏感性为87%,特异性为63%,并且与因出院延迟导致的不适当住院天数显著相关。内部和外部验证证实了这些结果。

结论

在住院第3天计算的一个简单评分能够以较高的准确性预测出院至PAC机构。评分>8分应促使早期出院计划的制定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09c/2492858/6aa50f06155d/1472-6963-8-154-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验