Suppr超能文献

核糖体蛋白操纵子中的一种新调控回路:S2在体内对rpsB-tsf表达的调控

A new regulatory circuit in ribosomal protein operons: S2-mediated control of the rpsB-tsf expression in vivo.

作者信息

Aseev Leonid V, Levandovskaya Alexandrina A, Tchufistova Ludmila S, Scaptsova Nadezda V, Boni Irina V

机构信息

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia.

出版信息

RNA. 2008 Sep;14(9):1882-94. doi: 10.1261/rna.1099108. Epub 2008 Jul 22.

Abstract

Autogenous regulation is a general strategy of balancing ribosomal protein synthesis in bacteria. Control mechanisms have been studied in detail for most of ribosomal protein operons, except for rpsB-tsf encoding essential r-protein S2 and elongation factor Ts, where even the promoter has remained unknown. By using single-copy translational fusions with the chromosomal lacZ gene and Western-blot analysis, we demonstrate here that S2 serves as a negative regulator of both rpsB and tsf expression in vivo, acting at a single target within the rpsB 5'-untranslated region (5'-UTR). As determined by primer extension, transcription of the Escherichia coli rpsB-tsf operon starts 162 nucleotides upstream of the rpsB initiation codon at a single promoter TGTGGTATAAA belonging to the extended -10 promoter class. Both the promoter signature and the 5'-UTR structure of the rpsB gene appear to be highly conserved in gamma-proteobacteria. Deletion analysis of the rpsB 5'-UTR within rpsB'-'lacZ fusions has revealed that an operator region involved in the S2 autoregulation comprises conserved structural elements located upstream of the rpsB ribosome binding site. The S2-mediated autogenous control is impaired in rpsB mutants and, more surprisingly, in the rpsA mutant producing decreased amounts of truncated r-protein S1 (rpsAIS10), indicating that S2 might act as a repressor in cooperation with S1.

摘要

自体调控是细菌中平衡核糖体蛋白合成的一种普遍策略。除了编码必需核糖体蛋白S2和延伸因子Ts的rpsB - tsf外,大多数核糖体蛋白操纵子的控制机制已得到详细研究,而rpsB - tsf的启动子甚至仍不为人知。通过使用与染色体lacZ基因的单拷贝翻译融合和蛋白质免疫印迹分析,我们在此证明S2在体内作为rpsB和tsf表达的负调控因子,作用于rpsB 5' - 非翻译区(5' - UTR)内的单一靶点。通过引物延伸确定,大肠杆菌rpsB - tsf操纵子的转录在rpsB起始密码子上游162个核苷酸处开始,起始于一个属于扩展 -10启动子类别的单一启动子TGTGGTATAAA。rpsB基因的启动子特征和5' - UTR结构在γ - 变形菌中似乎高度保守。对rpsB' - 'lacZ融合体中rpsB 5' - UTR的缺失分析表明,参与S2自体调控的一个操纵子区域包含位于rpsB核糖体结合位点上游的保守结构元件。S2介导的自体调控在rpsB突变体中受损,更令人惊讶的是,在产生截短核糖体蛋白S1(rpsAIS10)量减少的rpsA突变体中也受损,这表明S2可能与S1协同作为阻遏物发挥作用。

相似文献

5
Dissecting the extended "-10" Escherichia coli rpsB promoter activity and regulation in vivo.
Biochemistry (Mosc). 2014 Aug;79(8):776-84. doi: 10.1134/S0006297914080057.
8
Regulation of Ribosomal Protein Operons rplM-rpsI, rpmB-rpmG, and rplU-rpmA at the Transcriptional and Translational Levels.
J Bacteriol. 2016 Aug 25;198(18):2494-502. doi: 10.1128/JB.00187-16. Print 2016 Sep 15.
10
Regulation of the rplY gene encoding 5S rRNA binding protein L25 in Escherichia coli and related bacteria.
RNA. 2015 May;21(5):851-61. doi: 10.1261/rna.047381.114. Epub 2015 Mar 6.

引用本文的文献

1
Extraribosomal Functions of Bacterial Ribosomal Proteins-An Update, 2023.
Int J Mol Sci. 2024 Mar 3;25(5):2957. doi: 10.3390/ijms25052957.
2
Structural insight into translation initiation of the cl leaderless mRNA.
bioRxiv. 2023 Oct 23:2023.09.02.556006. doi: 10.1101/2023.09.02.556006.
3
Quiescence of Aerosols to Survive Mechanical Stress during High-Velocity Collection.
Microorganisms. 2023 Mar 3;11(3):647. doi: 10.3390/microorganisms11030647.
4
Amyloidogenic Peptides: New Class of Antimicrobial Peptides with the Novel Mechanism of Activity.
Int J Mol Sci. 2022 May 13;23(10):5463. doi: 10.3390/ijms23105463.
6
RNA base-pairing complexity in living cells visualized by correlated chemical probing.
Proc Natl Acad Sci U S A. 2019 Dec 3;116(49):24574-24582. doi: 10.1073/pnas.1905491116. Epub 2019 Nov 19.
8
Deciphering global gene expression and regulation strategy in Escherichia coli during carbon limitation.
Microb Biotechnol. 2019 Mar;12(2):360-376. doi: 10.1111/1751-7915.13343. Epub 2018 Dec 11.
9
Transcriptional Regulation Buffers Gene Dosage Effects on a Highly Expressed Operon in .
mBio. 2018 Sep 11;9(5):e01446-18. doi: 10.1128/mBio.01446-18.

本文引用的文献

1
A snapshot of the 30S ribosomal subunit capturing mRNA via the Shine-Dalgarno interaction.
Structure. 2007 Mar;15(3):289-97. doi: 10.1016/j.str.2006.12.008.
2
Structural basis for messenger RNA movement on the ribosome.
Nature. 2006 Nov 16;444(7117):391-4. doi: 10.1038/nature05281. Epub 2006 Oct 18.
3
The 160-kilobase genome of the bacterial endosymbiont Carsonella.
Science. 2006 Oct 13;314(5797):267. doi: 10.1126/science.1134196.
5
Cleavage mechanism of ATP-dependent Lon protease toward ribosomal S2 protein.
FEBS Lett. 2005 Dec 19;579(30):6846-50. doi: 10.1016/j.febslet.2005.11.026. Epub 2005 Dec 1.
6
Ribosomal proteins in the spotlight.
Crit Rev Biochem Mol Biol. 2005 Sep-Oct;40(5):243-67. doi: 10.1080/10409230500256523.
9
Transcription attenuation: a highly conserved regulatory strategy used by bacteria.
Trends Genet. 2005 May;21(5):260-4. doi: 10.1016/j.tig.2005.03.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验