Salje Jeanne, Löwe Jan
Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, UK.
EMBO J. 2008 Aug 20;27(16):2230-8. doi: 10.1038/emboj.2008.152. Epub 2008 Jul 24.
The R1 plasmid employs ATP-driven polymerisation of the actin-like protein ParM to move newly replicated DNA to opposite poles of a bacterial cell. This process is essential for ensuring accurate segregation of the low-copy number plasmid and is the best characterised example of DNA partitioning in prokaryotes. In vivo, ParM only forms long filaments when capped at both ends by attachment to a centromere-like region parC, through a small DNA-binding protein ParR. Here, we present biochemical and electron microscopy data leading to a model for the mechanism by which ParR-parC complexes bind and stabilise elongating ParM filaments. We propose that the open ring formed by oligomeric ParR dimers with parC DNA wrapped around acts as a rigid clamp, which holds the end of elongating ParM filaments while allowing entry of new ATP-bound monomers. We propose a processive mechanism by which cycles of ATP hydrolysis in polymerising ParM drives movement of ParR-bound parC DNA. Importantly, our model predicts that each pair of plasmids will be driven apart in the cell by just a single double helical ParM filament.
R1质粒利用由ATP驱动的肌动蛋白样蛋白ParM聚合,将新复制的DNA移动到细菌细胞的两极。这一过程对于确保低拷贝数质粒的准确分离至关重要,是原核生物中DNA分配的最典型例子。在体内,只有当ParM两端通过与小DNA结合蛋白ParR附着于类着丝粒区域parC时,才会形成长丝。在此,我们展示了生化和电子显微镜数据,得出了ParR-parC复合物结合并稳定伸长的ParM丝的机制模型。我们提出,由寡聚ParR二聚体形成的开放环,周围缠绕着parC DNA,充当刚性夹具,在允许新的ATP结合单体进入的同时,固定伸长的ParM丝的末端。我们提出了一种连续机制,聚合ParM中的ATP水解循环驱动与ParR结合的parC DNA移动。重要的是,我们的模型预测,每对质粒在细胞中仅由单根双螺旋ParM丝驱动分离。