Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz Graz, Austria.
Department of Biology, Johns Hopkins University Baltimore, MD, USA.
Front Mol Biosci. 2016 Jul 19;3:32. doi: 10.3389/fmolb.2016.00032. eCollection 2016.
Bacterial conjugation is a form of type IV secretion used to transport protein and DNA directly to recipient bacteria. The process is cell contact-dependent, yet the mechanisms enabling extracellular events to trigger plasmid transfer to begin inside the cell remain obscure. In this study of plasmid R1 we investigated the role of plasmid proteins in the initiation of gene transfer. We find that TraI, the central regulator of conjugative DNA processing, interacts physically, and functionally with the plasmid partitioning proteins ParM and ParR. These interactions stimulate TraI catalyzed relaxation of plasmid DNA in vivo and in vitro and increase ParM ATPase activity. ParM also binds the coupling protein TraD and VirB4-like channel ATPase TraC. Together, these protein-protein interactions probably act to co-localize the transfer components intracellularly and promote assembly of the conjugation machinery. Importantly these data also indicate that the continued association of ParM and ParR at the conjugative pore is necessary for plasmid transfer to start efficiently. Moreover, the conjugative pilus and underlying secretion machinery assembled in the absence of Par proteins mediate poor biofilm formation and are completely dysfunctional for pilus specific R17 bacteriophage uptake. Thus, functional integration of Par components at the interface of relaxosome, coupling protein, and channel ATPases appears important for an optimal conformation and effective activation of the transfer machinery. We conclude that low copy plasmid R1 has evolved an active segregation system that optimizes both its vertical and lateral modes of dissemination.
细菌接合是一种用于将蛋白质和 DNA 直接转运到受体细菌的 IV 型分泌方式。该过程依赖于细胞接触,但使细胞外事件能够触发质粒转移开始的机制仍然不清楚。在这项关于质粒 R1 的研究中,我们研究了质粒蛋白在基因转移起始中的作用。我们发现,TraI 是接合 DNA 加工的中央调节剂,与质粒分配蛋白 ParM 和 ParR 发生物理和功能相互作用。这些相互作用刺激 TraI 催化质粒 DNA 的体内和体外松弛,并增加 ParM ATP 酶活性。ParM 还结合了偶联蛋白 TraD 和 VirB4 样通道 ATP 酶 TraC。这些蛋白-蛋白相互作用可能共同作用,将转移成分在细胞内共定位,并促进共轭机制的组装。重要的是,这些数据还表明,ParM 和 ParR 在共轭孔中的持续关联对于有效地开始质粒转移是必要的。此外,在没有 Par 蛋白的情况下组装的共轭菌毛和基础分泌机制介导较差的生物膜形成,并且对于毛特别的 R17 噬菌体摄取完全功能失调。因此,Par 成分在松弛体、偶联蛋白和通道 ATP 酶的界面上的功能整合对于转移机制的最佳构象和有效激活似乎很重要。我们得出结论,低拷贝质粒 R1 已经进化出一种主动的分离系统,该系统优化了其垂直和横向传播模式。