Suppr超能文献

猎豹(Acinonyx jubatus)后肢的功能解剖。

Functional anatomy of the cheetah (Acinonyx jubatus) hindlimb.

机构信息

Structure and Motion Laboratory, The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, UK.

出版信息

J Anat. 2011 Apr;218(4):363-74. doi: 10.1111/j.1469-7580.2010.01310.x. Epub 2010 Nov 10.

Abstract

The cheetah is capable of a top speed of 29 ms(-1) compared to the maximum speed of 17 ms(-1) achieved by the racing greyhound. In this study of the hindlimb and in the accompanying paper on the forelimb we have quantified the musculoskeletal anatomy of the cheetah and greyhound and compared them to identify any differences that may account for this variation in their locomotor abilities. Specifically, bone length, mass and mid-shaft diameter were measured, along with muscle mass, fascicle lengths, pennation angles and moment arms to enable estimates of maximal isometric force, joint torques and joint rotational velocities to be calculated. Surprisingly the cheetahs had a smaller volume of hip extensor musculature than the greyhounds, and we therefore propose that the cheetah powers acceleration using its extensive back musculature. The cheetahs also had an extremely powerful psoas muscle which could help to resist the pitching moments around the hip associated with fast accelerations. The hindlimb bones were proportionally longer and heavier, enabling the cheetah to take longer strides and potentially resist higher peak limb forces. The cheetah therefore possesses several unique adaptations for high-speed locomotion and fast accelerations, when compared to the racing greyhound.

摘要

猎豹的最高速度可达 29 米/秒,相比之下,赛狗的最高速度可达 17 米/秒。在这项对后肢的研究以及对前肢的相关研究中,我们对猎豹和赛狗的骨骼肌肉解剖结构进行了量化,并进行了比较,以确定可能导致它们在运动能力上存在差异的任何因素。具体来说,我们测量了骨长度、骨质量和骨干直径,以及肌肉质量、肌束长度、羽状角和力臂,以计算最大等长力、关节扭矩和关节旋转速度的估计值。令人惊讶的是,猎豹的髋伸肌体积比赛狗小,因此我们提出,猎豹利用其广泛的背部肌肉来提供加速度。猎豹的腰大肌也非常强大,这有助于抵抗与快速加速相关的髋关节俯仰力矩。后肢骨骼的比例更长、更重,使猎豹能够迈出更长的步幅,并可能抵抗更高的峰值肢体力量。因此,与赛狗相比,猎豹具有几种独特的适应高速运动和快速加速的特征。

相似文献

1
Functional anatomy of the cheetah (Acinonyx jubatus) hindlimb.
J Anat. 2011 Apr;218(4):363-74. doi: 10.1111/j.1469-7580.2010.01310.x. Epub 2010 Nov 10.
2
Functional anatomy of the cheetah (Acinonyx jubatus) forelimb.
J Anat. 2011 Apr;218(4):375-85. doi: 10.1111/j.1469-7580.2011.01344.x. Epub 2011 Feb 21.
4
Functional anatomy and muscle moment arms of the pelvic limb of an elite sprinting athlete: the racing greyhound (Canis familiaris).
J Anat. 2008 Oct;213(4):361-72. doi: 10.1111/j.1469-7580.2008.00961.x. Epub 2008 Jul 22.
5
Myosin heavy chain composition of tiger (Panthera tigris) and cheetah (Acinonyx jubatus) hindlimb muscles.
J Exp Zool A Ecol Genet Physiol. 2010 Jan 1;313(1):45-57. doi: 10.1002/jez.574.
6
[Anatomic features of the carpal joint of the cheetah (Acinonyx jubatuw), compared with the domestic cat (Felis catus)].
Anat Histol Embryol. 1999 Jul;28(3):177-82. doi: 10.1046/j.1439-0264.1999.00184.x.
8
Regional variation in the cheetah (Acinonyx jubatus) revisited: Morphology of wild and captive populations.
Zoo Biol. 2020 Mar;39(2):83-96. doi: 10.1002/zoo.21523. Epub 2019 Nov 14.
10
Skeletal muscle histology and biochemistry of an elite sprinter, the African cheetah.
J Comp Physiol B. 1997 Nov;167(8):527-35. doi: 10.1007/s003600050105.

引用本文的文献

1
Role of forelimb morphology in muscle sensorimotor functions during locomotion in the cat.
J Physiol. 2025 Jan;603(2):447-487. doi: 10.1113/JP287448. Epub 2024 Dec 20.
2
ROLE OF FORELIMB MORPHOLOGY IN MUSCLE SENSORIMOTOR FUNCTIONS DURING LOCOMOTION IN THE CAT.
bioRxiv. 2024 Jul 16:2024.07.11.603106. doi: 10.1101/2024.07.11.603106.
4
Markerless 3D kinematics and force estimation in cheetahs.
Sci Rep. 2024 May 8;14(1):10579. doi: 10.1038/s41598-024-60731-1.
5
Method of Changing Running Direction of Cheetah-Inspired Quadruped Robot.
Sensors (Basel). 2022 Dec 7;22(24):9601. doi: 10.3390/s22249601.
6
The brain of the North American cheetah-like cat .
iScience. 2022 Nov 25;25(12):105671. doi: 10.1016/j.isci.2022.105671. eCollection 2022 Dec 22.
7
Modulation of the gait pattern during split-belt locomotion after lateral spinal cord hemisection in adult cats.
J Neurophysiol. 2022 Dec 1;128(6):1593-1616. doi: 10.1152/jn.00230.2022. Epub 2022 Nov 16.
8
Comparison of leg dynamic models for quadrupedal robots with compliant backbone.
Sci Rep. 2022 Aug 26;12(1):14579. doi: 10.1038/s41598-022-18536-7.
9
Biological adaptation in light of the Lewontin-Williams (a)symmetry.
Evolution. 2022 Jul;76(7):1619-1624. doi: 10.1111/evo.14502. Epub 2022 May 18.
10
From fibre to function: are we accurately representing muscle architecture and performance?
Biol Rev Camb Philos Soc. 2022 Aug;97(4):1640-1676. doi: 10.1111/brv.12856. Epub 2022 Apr 7.

本文引用的文献

1
Pitch then power: limitations to acceleration in quadrupeds.
Biol Lett. 2009 Oct 23;5(5):610-3. doi: 10.1098/rsbl.2009.0360. Epub 2009 Jun 24.
4
Functional anatomy and muscle moment arms of the pelvic limb of an elite sprinting athlete: the racing greyhound (Canis familiaris).
J Anat. 2008 Oct;213(4):361-72. doi: 10.1111/j.1469-7580.2008.00961.x. Epub 2008 Jul 22.
5
Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems.
Bioinspir Biomim. 2008 Sep;3(3):034001. doi: 10.1088/1748-3182/3/3/034001. Epub 2008 Jul 1.
6
Variable gearing in pennate muscles.
Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1745-50. doi: 10.1073/pnas.0709212105. Epub 2008 Jan 29.
7
Biarticular hip extensor and knee flexor muscle moment arms of the feline hindlimb.
J Biomech. 2007;40(15):3448-57. doi: 10.1016/j.jbiomech.2007.05.021. Epub 2007 Jul 12.
8
Muscle moment arms of pelvic limb muscles of the ostrich (Struthio camelus).
J Anat. 2007 Sep;211(3):313-24. doi: 10.1111/j.1469-7580.2007.00762.x. Epub 2007 Jun 30.
10
Muscle architecture and functional anatomy of the pelvic limb of the ostrich (Struthio camelus).
J Anat. 2006 Dec;209(6):765-79. doi: 10.1111/j.1469-7580.2006.00658.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验