Suppr超能文献

液泡导入和降解途径与内吞途径合并,将果糖-1,6-二磷酸酶输送到液泡进行降解。

The vacuolar import and degradation pathway merges with the endocytic pathway to deliver fructose-1,6-bisphosphatase to the vacuole for degradation.

作者信息

Brown C Randell, Wolfe Allison B, Cui Dongying, Chiang Hui-Ling

机构信息

Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA.

出版信息

J Biol Chem. 2008 Sep 19;283(38):26116-27. doi: 10.1074/jbc.M709922200. Epub 2008 Jul 25.

Abstract

The gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) is degraded in the vacuole when glucose is added to glucose-starved cells. Before it is delivered to the vacuole, however, FBPase is imported into intermediate carriers called Vid (vacuole import and degradation) vesicles. Here, using biochemical and genetic approaches, we identified a requirement for SEC28 in FBPase degradation. SEC28 encodes the epsilon-COP subunit of COPI (coat protein complex I) coatomer proteins. When SEC28 and other coatomer genes were mutated, FBPase degradation was defective and FBPase association with Vid vesicles was impaired. Coatomer proteins were identified as components of Vid vesicles, and they formed a protein complex with a Vid vesicle-specific protein, Vid24p. Furthermore, Vid24p association with Vid vesicles was impaired when coatomer genes were mutated. Kinetic studies indicated that Sec28p traffics to multiple locations. Sec28p was in Vid vesicles, endocytic compartments, and the vacuolar membrane in various mutants that block the FBPase degradation pathway. Sec28p was also found in vesicles adjacent to the vacuolar membrane in the ret2-1 coatomer mutant. We propose that Sec28p resides in Vid vesicles, and these vesicles converge with the endocytic pathway. After fusion, Sec28p is distributed on the vacuolar membrane, where it concentrates on vesicles that pinch off from this organelle. FBPase also utilizes the endocytic pathway for transport to the vacuole, as demonstrated by its presence in endocytic compartments in the Deltavph1 mutant. Taken together, our results indicate a strong connection between the Vid trafficking pathway and the endocytic pathway.

摘要

当向葡萄糖饥饿的细胞中添加葡萄糖时,糖异生酶果糖 -1,6-二磷酸酶(FBPase)会在液泡中被降解。然而,在它被运送到液泡之前,FBPase会被导入到称为Vid(液泡导入与降解)囊泡的中间载体中。在这里,我们使用生化和遗传学方法,确定了SEC28在FBPase降解过程中的必要性。SEC28编码衣被蛋白复合体I(COPI)的ε-COP亚基。当SEC28和其他衣被蛋白基因发生突变时,FBPase降解出现缺陷,并且FBPase与Vid囊泡的结合受到损害。衣被蛋白被鉴定为Vid囊泡的组成成分,并且它们与一种Vid囊泡特异性蛋白Vid24p形成了蛋白复合体。此外,当衣被蛋白基因发生突变时,Vid24p与Vid囊泡的结合也受到损害。动力学研究表明,Sec28p会运输到多个位置。在各种阻断FBPase降解途径的突变体中,Sec28p存在于Vid囊泡、内吞区室和液泡膜中。在ret2 -1衣被蛋白突变体中,Sec28p也存在于与液泡膜相邻的囊泡中。我们提出Sec28p存在于Vid囊泡中,并且这些囊泡与内吞途径汇聚。融合后,Sec28p分布在液泡膜上,它集中在从这个细胞器脱离的囊泡上。FBPase也利用内吞途径运输到液泡,这在Deltavph1突变体的内吞区室中其存在得到了证明。综上所述,我们的结果表明Vid运输途径和内吞途径之间存在紧密联系。

相似文献

6
The Vid vesicle to vacuole trafficking event requires components of the SNARE membrane fusion machinery.
J Biol Chem. 2003 Jul 11;278(28):25688-99. doi: 10.1074/jbc.M210549200. Epub 2003 May 2.
7
Vps34p is required for the decline of extracellular fructose-1,6-bisphosphatase in the vacuole import and degradation pathway.
J Biol Chem. 2012 Sep 21;287(39):33080-93. doi: 10.1074/jbc.M112.360412. Epub 2012 Jul 25.
8
The type 1 phosphatase Reg1p-Glc7p is required for the glucose-induced degradation of fructose-1,6-bisphosphatase in the vacuole.
J Biol Chem. 2004 Mar 12;279(11):9713-24. doi: 10.1074/jbc.M310793200. Epub 2003 Dec 18.
9
Degradation of the gluconeogenic enzyme fructose-1, 6-bisphosphatase is dependent on the vacuolar ATPase.
Autophagy. 2005 Oct-Dec;1(3):146-56. doi: 10.4161/auto.1.3.2036. Epub 2005 Oct 19.

引用本文的文献

1
Structural and Functional Insights into GID/CTLH E3 Ligase Complexes.
Int J Mol Sci. 2022 May 24;23(11):5863. doi: 10.3390/ijms23115863.
2
Aminopeptidases trim Xaa-Pro proteins, initiating their degradation by the Pro/N-degron pathway.
Proc Natl Acad Sci U S A. 2021 Oct 26;118(43). doi: 10.1073/pnas.2115430118.
3
Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition).
Autophagy. 2021 Jan;17(1):1-382. doi: 10.1080/15548627.2020.1797280. Epub 2021 Feb 8.
4
Recognition of nonproline N-terminal residues by the Pro/N-degron pathway.
Proc Natl Acad Sci U S A. 2020 Jun 23;117(25):14158-14167. doi: 10.1073/pnas.2007085117. Epub 2020 Jun 8.
5
Intracellular vesicle clusters are organelles that synthesize extracellular vesicle-associated cargo proteins in yeast.
J Biol Chem. 2020 Feb 28;295(9):2650-2663. doi: 10.1074/jbc.RA119.008612. Epub 2020 Jan 23.
6
Evolution of Substrates and Components of the Pro/N-Degron Pathway.
Biochemistry. 2020 Feb 4;59(4):582-593. doi: 10.1021/acs.biochem.9b00953. Epub 2020 Jan 2.
7
Gid10 as an alternative N-recognin of the Pro/N-degron pathway.
Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15914-15923. doi: 10.1073/pnas.1908304116. Epub 2019 Jul 23.
8
Hsp70-nucleotide exchange factor (NEF) Fes1 has non-NEF roles in degradation of gluconeogenic enzymes and cell wall integrity.
PLoS Genet. 2019 Jun 26;15(6):e1008219. doi: 10.1371/journal.pgen.1008219. eCollection 2019 Jun.
9
An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes.
Science. 2017 Jan 27;355(6323). doi: 10.1126/science.aal3655.
10
Studies of recombinant TWA1 reveal constitutive dimerization.
Biosci Rep. 2017 Jan 13;37(1). doi: 10.1042/BSR20160401. Print 2017 Feb 28.

本文引用的文献

1
Involvement of specific COPI subunits in protein sorting from the late endosome to the vacuole in yeast.
Mol Cell Biol. 2007 Jan;27(2):526-40. doi: 10.1128/MCB.00577-06. Epub 2006 Nov 13.
2
Degradation of the gluconeogenic enzyme fructose-1, 6-bisphosphatase is dependent on the vacuolar ATPase.
Autophagy. 2005 Oct-Dec;1(3):146-56. doi: 10.4161/auto.1.3.2036. Epub 2005 Oct 19.
3
The ESCRT complexes: structure and mechanism of a membrane-trafficking network.
Annu Rev Biophys Biomol Struct. 2006;35:277-98. doi: 10.1146/annurev.biophys.35.040405.102126.
4
Autophagy: molecular machinery for self-eating.
Cell Death Differ. 2005 Nov;12 Suppl 2(Suppl 2):1542-52. doi: 10.1038/sj.cdd.4401765.
5
Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae.
Biochim Biophys Acta. 2005 Jul 10;1744(3):438-54. doi: 10.1016/j.bbamcr.2005.04.004.
6
Adaptors for clathrin coats: structure and function.
Annu Rev Cell Dev Biol. 2004;20:153-91. doi: 10.1146/annurev.cellbio.20.010403.104543.
7
Bi-directional protein transport between the ER and Golgi.
Annu Rev Cell Dev Biol. 2004;20:87-123. doi: 10.1146/annurev.cellbio.20.010403.105307.
9
Traffic COPs and the formation of vesicle coats.
Trends Cell Biol. 1996 Dec;6(12):468-73. doi: 10.1016/0962-8924(96)84943-9.
10
Biogenesis of ER-to-Golgi transport carriers: complex roles of COPII in ER export.
Trends Cell Biol. 2004 Feb;14(2):57-61. doi: 10.1016/j.tcb.2003.12.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验