Suppr超能文献

泛素蛋白酶体系统中 Pro/N- 降解途径的底物和组件的演变。

Evolution of Substrates and Components of the Pro/N-Degron Pathway.

机构信息

Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , California 91125 , United States.

出版信息

Biochemistry. 2020 Feb 4;59(4):582-593. doi: 10.1021/acs.biochem.9b00953. Epub 2020 Jan 2.

Abstract

Gid4, a subunit of the ubiquitin ligase GID, is the recognition component of the Pro/N-degron pathway. Gid4 targets proteins in particular through their N-terminal (Nt) proline (Pro) residue. In and other yeasts, the gluconeogenic enzymes Fbp1, Icl1, and Mdh2 bear Nt-Pro and are conditionally destroyed by the Pro/N-degron pathway. However, in mammals and in many non- yeasts, for example, in , these enzymes lack Nt-Pro. We used to explore evolution of the Pro/N-degron pathway. One question to be addressed was whether the presence of non-Pro Nt residues in Fbp1, Icl1, and Mdh2 was accompanied, on evolutionary time scales ( and diverged ∼150 million years ago), by a changed specificity of the Gid4 N-recognin. We used yeast-based two-hybrid binding assays and protein-degradation assays to show that the non-Pro (Ala) Nt residue of Fbp1 makes this enzyme long-lived in . We also found that the replacement, through mutagenesis, of Nt-Ala and the next three residues of Fbp1 with the four-residue Nt-PTLV sequence of Fbp1 sufficed to make the resulting "hybrid" Fbp1 a short-lived substrate of Gid4 in . We consider a blend of quasi-neutral genetic drift and natural selection that can account for these and related results. To the best of our knowledge, this work is the first study of the ubiquitin system in , including development of the first protein-degradation assay (based on the antibiotic blasticidin) suitable for use with this organism.

摘要

Gid4 是泛素连接酶 GID 的一个亚基,是 Pro/N-降解途径的识别成分。Gid4 通过其 N 端(Nt)脯氨酸(Pro)残基专门靶向蛋白质。在 和其他 酵母中,糖异生酶 Fbp1、Icl1 和 Mdh2 带有 Nt-Pro,并且通过 Pro/N-降解途径条件性破坏。然而,在哺乳动物和许多非 酵母中,例如 ,这些酶缺乏 Nt-Pro。我们使用 来探索 Pro/N-降解途径的进化。要解决的一个问题是,在进化时间尺度上( 和 大约在 1.5 亿年前分化), 中 Fbp1、Icl1 和 Mdh2 的非 Pro Nt 残基的存在是否伴随着 Gid4 N-识别蛋白特异性的改变。我们使用基于酵母的双杂交结合测定和蛋白降解测定表明, 中 Fbp1 的非 Pro(Ala)Nt 残基使该酶在 中具有长寿命。我们还发现,通过诱变将 Fbp1 的 Nt-Ala 和接下来的三个残基替换为 Fbp1 的四残基 Nt-PTLV 序列足以使产生的“杂交”Fbp1 成为 Gid4 在 中的短寿命底物。我们认为,准中性遗传漂变和自然选择的混合可以解释这些和相关结果。据我们所知,这项工作是对 中的泛素系统的首次研究,包括开发了第一个适用于该生物的蛋白降解测定法(基于抗生素博来霉素)。

相似文献

1
Evolution of Substrates and Components of the Pro/N-Degron Pathway.
Biochemistry. 2020 Feb 4;59(4):582-593. doi: 10.1021/acs.biochem.9b00953. Epub 2020 Jan 2.
2
An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes.
Science. 2017 Jan 27;355(6323). doi: 10.1126/science.aal3655.
3
Recognition of nonproline N-terminal residues by the Pro/N-degron pathway.
Proc Natl Acad Sci U S A. 2020 Jun 23;117(25):14158-14167. doi: 10.1073/pnas.2007085117. Epub 2020 Jun 8.
4
Crystal structure of yeast Gid10 in complex with Pro/N-degron.
Biochem Biophys Res Commun. 2021 Dec 10;582:86-92. doi: 10.1016/j.bbrc.2021.10.007. Epub 2021 Oct 6.
5
Gid10 as an alternative N-recognin of the Pro/N-degron pathway.
Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15914-15923. doi: 10.1073/pnas.1908304116. Epub 2019 Jul 23.
6
Recognition of gluconeogenic enzymes; Icl1, Fbp1, and Mdh2 by Gid4 ligase: A molecular docking study.
J Mol Recognit. 2020 May;33(5):e2831. doi: 10.1002/jmr.2831. Epub 2019 Dec 20.
7
Aminopeptidases trim Xaa-Pro proteins, initiating their degradation by the Pro/N-degron pathway.
Proc Natl Acad Sci U S A. 2021 Oct 26;118(43). doi: 10.1073/pnas.2115430118.
9
Regulation of the Gid ubiquitin ligase recognition subunit Gid4.
FEBS Lett. 2018 Oct;592(19):3286-3294. doi: 10.1002/1873-3468.13229. Epub 2018 Sep 12.
10
Molecular basis of GID4-mediated recognition of degrons for the Pro/N-end rule pathway.
Nat Chem Biol. 2018 May;14(5):466-473. doi: 10.1038/s41589-018-0036-1. Epub 2018 Apr 9.

引用本文的文献

1
Crystal structure of the Ate1 arginyl-tRNA-protein transferase and arginylation of N-degron substrates.
Proc Natl Acad Sci U S A. 2022 Aug 2;119(31):e2209597119. doi: 10.1073/pnas.2209597119. Epub 2022 Jul 25.
2
Structural and Functional Insights into GID/CTLH E3 Ligase Complexes.
Int J Mol Sci. 2022 May 24;23(11):5863. doi: 10.3390/ijms23115863.
3
Aminopeptidases trim Xaa-Pro proteins, initiating their degradation by the Pro/N-degron pathway.
Proc Natl Acad Sci U S A. 2021 Oct 26;118(43). doi: 10.1073/pnas.2115430118.
4
Cellular Control of Protein Turnover via the Modification of the Amino Terminus.
Int J Mol Sci. 2021 Mar 29;22(7):3545. doi: 10.3390/ijms22073545.
5
DIA-based systems biology approach unveils E3 ubiquitin ligase-dependent responses to a metabolic shift.
Proc Natl Acad Sci U S A. 2020 Dec 22;117(51):32806-32815. doi: 10.1073/pnas.2020197117. Epub 2020 Dec 7.
6
Recognition of nonproline N-terminal residues by the Pro/N-degron pathway.
Proc Natl Acad Sci U S A. 2020 Jun 23;117(25):14158-14167. doi: 10.1073/pnas.2007085117. Epub 2020 Jun 8.
7
Five enzymes of the Arg/N-degron pathway form a targeting complex: The concept of superchanneling.
Proc Natl Acad Sci U S A. 2020 May 19;117(20):10778-10788. doi: 10.1073/pnas.2003043117. Epub 2020 May 4.

本文引用的文献

1
The expanded specificity and physiological role of a widespread N-degron recognin.
Proc Natl Acad Sci U S A. 2019 Sep 10;116(37):18629-18637. doi: 10.1073/pnas.1821060116. Epub 2019 Aug 26.
2
Gid10 as an alternative N-recognin of the Pro/N-degron pathway.
Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15914-15923. doi: 10.1073/pnas.1908304116. Epub 2019 Jul 23.
4
Conserved N-terminal cysteine dioxygenases transduce responses to hypoxia in animals and plants.
Science. 2019 Jul 5;365(6448):65-69. doi: 10.1126/science.aaw0112.
6
Cycloheximide can distort measurements of mRNA levels and translation efficiency.
Nucleic Acids Res. 2019 Jun 4;47(10):4974-4985. doi: 10.1093/nar/gkz205.
7
The Gid-complex: an emerging player in the ubiquitin ligase league.
Biol Chem. 2019 Oct 25;400(11):1429-1441. doi: 10.1515/hsz-2019-0139.
8
Regulation of c-Raf Stability through the CTLH Complex.
Int J Mol Sci. 2019 Feb 21;20(4):934. doi: 10.3390/ijms20040934.
9
N-degron and C-degron pathways of protein degradation.
Proc Natl Acad Sci U S A. 2019 Jan 8;116(2):358-366. doi: 10.1073/pnas.1816596116.
10
Posing the APC/C E3 Ubiquitin Ligase to Orchestrate Cell Division.
Trends Cell Biol. 2019 Feb;29(2):117-134. doi: 10.1016/j.tcb.2018.09.007. Epub 2018 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验