Suppr超能文献

Gid10 作为 Pro/N-降解途径的替代 N-recognin。

Gid10 as an alternative N-recognin of the Pro/N-degron pathway.

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125

出版信息

Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15914-15923. doi: 10.1073/pnas.1908304116. Epub 2019 Jul 23.

Abstract

In eukaryotes, N-degron pathways (formerly "N-end rule pathways") comprise a set of proteolytic systems whose unifying feature is their ability to recognize proteins containing N-terminal degradation signals called N-degrons, thereby causing degradation of these proteins by the 26S proteasome or autophagy. Gid4, a subunit of the GID ubiquitin ligase in the yeast , is the recognition component (N-recognin) of the GID-mediated Pro/N-degron pathway. Gid4 targets proteins by recognizing their N-terminal Pro residues or a Pro at position 2, in the presence of distinct adjoining sequence motifs. Under conditions of low or absent glucose, cells make it through gluconeogenesis. When grows on a nonfermentable carbon source, its gluconeogenic enzymes Fbp1, Icl1, Mdh2, and Pck1 are expressed and long-lived. Transition to a medium containing glucose inhibits the synthesis of these enzymes and induces their degradation by the Gid4-dependent Pro/N-degron pathway. While studying yeast Gid4, we identified a similar but uncharacterized yeast protein (YGR066C), which we named Gid10. A screen for N-terminal peptide sequences that can bind to Gid10 showed that substrate specificities of Gid10 and Gid4 overlap but are not identical. Gid10 is not expressed under usual (unstressful) growth conditions, but is induced upon starvation or osmotic stresses. Using protein binding analyses and degradation assays with substrates of GID, we show that Gid10 can function as a specific N-recognin of the Pro/N-degron pathway.

摘要

在真核生物中,N 降解途径(以前称为“N 端规则途径”)包含一组蛋白酶体系统,其统一特征是能够识别含有 N 端降解信号的蛋白质,称为 N 降解物,从而导致这些蛋白质被 26S 蛋白酶体或自噬降解。酵母中的 GID4 是 GID 泛素连接酶的一个亚基,是 GID 介导的 Pro/N 降解物途径的识别成分(N 识别蛋白)。Gid4 通过识别其 N 端 Pro 残基或位置 2 的 Pro 残基,在存在不同相邻序列基序的情况下,靶向蛋白质。在葡萄糖水平低或不存在的情况下,细胞通过糖异生途径通过。当 在不可发酵碳源上生长时,其糖异生酶 Fbp1、Icl1、Mdh2 和 Pck1 被表达并具有较长的半衰期。当细胞转换到含有葡萄糖的培养基中时,这些酶的合成被抑制,并通过 Gid4 依赖的 Pro/N 降解物途径诱导其降解。在研究酵母 Gid4 时,我们鉴定了一种类似但未被表征的酵母蛋白(YGR066C),我们将其命名为 Gid10。对可以与 Gid10 结合的 N 端肽序列的筛选表明,Gid10 和 Gid4 的底物特异性重叠但不相同。Gid10 在通常(无压力)生长条件下不表达,但在饥饿或渗透应激时诱导表达。使用蛋白结合分析和与 GID 底物的降解测定,我们表明 Gid10 可以作为 Pro/N 降解物途径的特异性 N 识别蛋白发挥作用。

相似文献

1
Gid10 as an alternative N-recognin of the Pro/N-degron pathway.Gid10 作为 Pro/N-降解途径的替代 N-recognin。
Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15914-15923. doi: 10.1073/pnas.1908304116. Epub 2019 Jul 23.
2
Crystal structure of yeast Gid10 in complex with Pro/N-degron.与Pro/N-降解子复合的酵母Gid10的晶体结构。
Biochem Biophys Res Commun. 2021 Dec 10;582:86-92. doi: 10.1016/j.bbrc.2021.10.007. Epub 2021 Oct 6.
3
Recognition of nonproline N-terminal residues by the Pro/N-degron pathway.Pro/N 肽段途径识别非脯氨酸 N 末端残基。
Proc Natl Acad Sci U S A. 2020 Jun 23;117(25):14158-14167. doi: 10.1073/pnas.2007085117. Epub 2020 Jun 8.
10
Regulation of the Gid ubiquitin ligase recognition subunit Gid4.Gid 泛素连接酶识别亚基 Gid4 的调控。
FEBS Lett. 2018 Oct;592(19):3286-3294. doi: 10.1002/1873-3468.13229. Epub 2018 Sep 12.

引用本文的文献

1
Degrons: defining the rules of protein degradation.降解结构域:定义蛋白质降解的规则
Nat Rev Mol Cell Biol. 2025 Jul 14. doi: 10.1038/s41580-025-00870-z.
6
N-degron pathways.N-连接肽降解途径。
Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2408697121. doi: 10.1073/pnas.2408697121. Epub 2024 Sep 12.
8

本文引用的文献

4
N-degron and C-degron pathways of protein degradation.蛋白质降解的 N-肽段和 C-肽段途径。
Proc Natl Acad Sci U S A. 2019 Jan 8;116(2):358-366. doi: 10.1073/pnas.1816596116.
9
Regulation of the Gid ubiquitin ligase recognition subunit Gid4.Gid 泛素连接酶识别亚基 Gid4 的调控。
FEBS Lett. 2018 Oct;592(19):3286-3294. doi: 10.1002/1873-3468.13229. Epub 2018 Sep 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验