Suppr超能文献

使用广义置信传播对全原子蛋白质结构进行自由能估计。

Free energy estimates of all-atom protein structures using generalized belief propagation.

作者信息

Kamisetty Hetunandan, Xing Eric P, Langmead Christopher J

机构信息

Computer Science Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.

出版信息

J Comput Biol. 2008 Sep;15(7):755-66. doi: 10.1089/cmb.2007.0131.

Abstract

We present a technique for approximating the free energy of protein structures using generalized belief propagation (GBP). The accuracy and utility of these estimates are then demonstrated in two different application domains. First, we show that the entropy component of our free energy estimates can useful in distinguishing native protein structures from decoys-structures with similar internal energy to that of the native structure, but otherwise incorrect. Our method is able to correctly identify the native fold from among a set of decoys with 87.5% accuracy over a total of 48 different immunoglobulin folds. The remaining 12.5% of native structures are ranked among the top four of all structures. Second, we show that our estimates of DeltaDeltaG upon mutation upon mutation for three different data sets have linear correlations of 0.63-0.70 with experimental measurements and statistically significant p-values. Together, these results suggest that GBP is an effective means for computing free energy in all-atom models of protein structures. GBP is also efficient, taking a few minutes to run on a typical sized protein, further suggesting that GBP may be an attractive alternative to more costly molecular dynamic simulations for some tasks.

摘要

我们提出了一种使用广义置信传播(GBP)来近似蛋白质结构自由能的技术。然后在两个不同的应用领域展示了这些估计值的准确性和实用性。首先,我们表明自由能估计值中的熵成分有助于区分天然蛋白质结构与诱饵结构——诱饵结构具有与天然结构相似的内能,但结构不正确。我们的方法能够在总共48种不同的免疫球蛋白折叠结构中,从一组诱饵结构中以87.5%的准确率正确识别出天然折叠结构。其余12.5%的天然结构在所有结构中排名前四。其次,我们表明对于三个不同数据集,我们对突变时ΔΔG的估计值与实验测量值具有0.63 - 0.70的线性相关性,且p值具有统计学意义。这些结果共同表明,GBP是在蛋白质结构的全原子模型中计算自由能的有效方法。GBP也很高效,在典型大小的蛋白质上运行只需几分钟,这进一步表明对于某些任务,GBP可能是比成本更高的分子动力学模拟更有吸引力的替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验