Suppr超能文献

利用稀疏图形模型研究蛋白质-蛋白质相互作用特异性的序列决定因素

Learning Sequence Determinants of Protein:protein Interaction Specificity with Sparse Graphical Models.

作者信息

Kamisetty Hetunandan, Ghosh Bornika, Langmead Christopher James, Bailey-Kellogg Chris

机构信息

Department of Biochemistry, University of Washington.

Department of Computer Science, Dartmouth.

出版信息

Res Comput Mol Biol. 2014;8394:129-143. doi: 10.1007/978-3-319-05269-4_10.

Abstract

In studying the strength and specificity of interaction between members of two protein families, key questions center on pairs of possible partners actually interact, they interact, and they interact while others do not. The advent of large-scale experimental studies of interactions between members of a target family and a diverse set of possible interaction partners offers the opportunity to address these questions. We develop here a method, DgSpi (Data-driven Graphical models of Specificity in Protein:protein Interactions), for learning and using graphical models that explicitly represent the amino acid basis for interaction specificity () and extend earlier classification-oriented approaches () to predict the Δ of binding (). We demonstrate the effectiveness of our approach in analyzing and predicting interactions between a set of 82 PDZ recognition modules, against a panel of 217 possible peptide partners, based on data from MacBeath and colleagues. Our predicted Δ values are highly predictive of the experimentally measured ones, reaching correlation coefficients of 0.69 in 10-fold cross-validation and 0.63 in leave-one-PDZ-out cross-validation. Furthermore, the model serves as a compact representation of amino acid constraints underlying the interactions, enabling protein-level Δ predictions to be naturally understood in terms of residue-level constraints. Finally, as a generative model, DgSpi readily enables the design of new interacting partners, and we demonstrate that designed ligands are novel and diverse.

摘要

在研究两个蛋白质家族成员之间相互作用的强度和特异性时,关键问题集中在可能的相互作用伙伴对是否实际相互作用、它们如何相互作用以及为何它们相互作用而其他伙伴对不相互作用。对目标家族成员与各种可能的相互作用伙伴之间相互作用进行大规模实验研究的出现,为解决这些问题提供了机会。我们在此开发了一种方法,即DgSpi(蛋白质-蛋白质相互作用特异性的数据驱动图形模型),用于学习和使用明确表示相互作用特异性氨基酸基础的图形模型,并扩展早期基于分类的方法来预测结合的Δ值。基于MacBeath及其同事的数据,我们证明了我们的方法在分析和预测82个PDZ识别模块与217个可能的肽伙伴之间相互作用时的有效性。我们预测的Δ值对实验测量值具有高度预测性,在10折交叉验证中相关系数达到0.69,在留一-PDZ-out交叉验证中达到0.63。此外,该模型可紧凑表示相互作用背后的氨基酸限制,从而使蛋白质水平的Δ预测能够根据残基水平的限制自然地得到理解。最后,作为一种生成模型,DgSpi能够轻松设计新的相互作用伙伴,并且我们证明设计的配体是新颖且多样的。

相似文献

1
Learning Sequence Determinants of Protein:protein Interaction Specificity with Sparse Graphical Models.
Res Comput Mol Biol. 2014;8394:129-143. doi: 10.1007/978-3-319-05269-4_10.
2
Learning sequence determinants of protein:protein interaction specificity with sparse graphical models.
J Comput Biol. 2015 Jun;22(6):474-86. doi: 10.1089/cmb.2014.0289. Epub 2015 May 14.
4
modPDZpep: a web resource for structure based analysis of human PDZ-mediated interaction networks.
Biol Direct. 2016 Sep 21;11(1):48. doi: 10.1186/s13062-016-0151-4.
6
Characterization of domain-peptide interaction interface: a case study on the amphiphysin-1 SH3 domain.
J Mol Biol. 2008 Feb 29;376(4):1201-14. doi: 10.1016/j.jmb.2007.12.054. Epub 2008 Jan 3.
7
Graphical models of residue coupling in protein families.
IEEE/ACM Trans Comput Biol Bioinform. 2008 Apr-Jun;5(2):183-97. doi: 10.1109/TCBB.2007.70225.
8
A sequence-based computational approach to predicting PDZ domain-peptide interactions.
Biochim Biophys Acta. 2014 Jan;1844(1 Pt B):165-70. doi: 10.1016/j.bbapap.2013.04.008. Epub 2013 Apr 20.
9
Domain Interaction Footprint: a multi-classification approach to predict domain-peptide interactions.
Bioinformatics. 2009 Jul 1;25(13):1632-9. doi: 10.1093/bioinformatics/btp264. Epub 2009 Apr 17.
10
Structure-based multiscale approach for identification of interaction partners of PDZ domains.
J Chem Inf Model. 2014 Apr 28;54(4):1143-56. doi: 10.1021/ci400627y. Epub 2014 Mar 17.

本文引用的文献

1
Assessing the utility of coevolution-based residue-residue contact predictions in a sequence- and structure-rich era.
Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15674-9. doi: 10.1073/pnas.1314045110. Epub 2013 Sep 5.
3
Accurate de novo structure prediction of large transmembrane protein domains using fragment-assembly and correlated mutation analysis.
Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):E1540-7. doi: 10.1073/pnas.1120036109. Epub 2012 May 29.
4
Learning generative models of molecular dynamics.
BMC Genomics. 2012;13 Suppl 1(Suppl 1):S5. doi: 10.1186/1471-2164-13-S1-S5. Epub 2012 Jan 17.
5
Protein 3D structure computed from evolutionary sequence variation.
PLoS One. 2011;6(12):e28766. doi: 10.1371/journal.pone.0028766. Epub 2011 Dec 7.
6
Direct-coupling analysis of residue coevolution captures native contacts across many protein families.
Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):E1293-301. doi: 10.1073/pnas.1111471108. Epub 2011 Nov 21.
7
PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments.
Bioinformatics. 2012 Jan 15;28(2):184-90. doi: 10.1093/bioinformatics/btr638. Epub 2011 Nov 17.
8
Toward more accurate pan-specific MHC-peptide binding prediction: a review of current methods and tools.
Brief Bioinform. 2012 May;13(3):350-64. doi: 10.1093/bib/bbr060. Epub 2011 Sep 22.
9
Learning generative models for protein fold families.
Proteins. 2011 Apr;79(4):1061-78. doi: 10.1002/prot.22934. Epub 2011 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验