Suppr超能文献

评估基于MCNPX的蒙特卡罗模拟模型预测三维吸收剂量分布的准确性。

Assessment of the accuracy of an MCNPX-based Monte Carlo simulation model for predicting three-dimensional absorbed dose distributions.

作者信息

Titt U, Sahoo N, Ding X, Zheng Y, Newhauser W D, Zhu X R, Polf J C, Gillin M T, Mohan R

机构信息

The University of Texas M D Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.

出版信息

Phys Med Biol. 2008 Aug 21;53(16):4455-70. doi: 10.1088/0031-9155/53/16/016. Epub 2008 Jul 31.

Abstract

In recent years, the Monte Carlo method has been used in a large number of research studies in radiation therapy. For applications such as treatment planning, it is essential to validate the dosimetric accuracy of the Monte Carlo simulations in heterogeneous media. The AAPM Report no 105 addresses issues concerning clinical implementation of Monte Carlo based treatment planning for photon and electron beams, however for proton-therapy planning, such guidance is not yet available. Here we present the results of our validation of the Monte Carlo model of the double scattering system used at our Proton Therapy Center in Houston. In this study, we compared Monte Carlo simulated depth doses and lateral profiles to measured data for a magnitude of beam parameters. We varied simulated proton energies and widths of the spread-out Bragg peaks, and compared them to measurements obtained during the commissioning phase of the Proton Therapy Center in Houston. Of 191 simulated data sets, 189 agreed with measured data sets to within 3% of the maximum dose difference and within 3 mm of the maximum range or penumbra size difference. The two simulated data sets that did not agree with the measured data sets were in the distal falloff of the measured dose distribution, where large dose gradients potentially produce large differences on the basis of minute changes in the beam steering. Hence, the Monte Carlo models of medium- and large-size double scattering proton-therapy nozzles were valid for proton beams in the 100 MeV-250 MeV interval.

摘要

近年来,蒙特卡罗方法已被用于大量放射治疗的研究中。对于治疗计划等应用,验证蒙特卡罗模拟在非均匀介质中的剂量学准确性至关重要。美国医学物理学家协会第105号报告讨论了基于蒙特卡罗的光子和电子束治疗计划临床实施的相关问题,然而对于质子治疗计划,尚无此类指导。在此,我们展示了对休斯顿质子治疗中心使用的双散射系统蒙特卡罗模型验证的结果。在本研究中,我们将蒙特卡罗模拟的深度剂量和横向剂量分布与一系列束流参数的测量数据进行了比较。我们改变了模拟质子能量和扩展布拉格峰的宽度,并将其与休斯顿质子治疗中心调试阶段获得的测量结果进行了比较。在这191个模拟数据集中,189个与测量数据集的最大剂量差异在3%以内,最大射程或半影尺寸差异在3毫米以内。两个与测量数据集不一致的模拟数据集处于测量剂量分布的远端剂量下降区,在该区域大剂量梯度可能会因束流方向的微小变化而产生较大差异。因此,中大型双散射质子治疗喷嘴的蒙特卡罗模型对于100 MeV - 250 MeV区间的质子束是有效的。

相似文献

1
Assessment of the accuracy of an MCNPX-based Monte Carlo simulation model for predicting three-dimensional absorbed dose distributions.
Phys Med Biol. 2008 Aug 21;53(16):4455-70. doi: 10.1088/0031-9155/53/16/016. Epub 2008 Jul 31.
3
Monte Carlo simulations for configuring and testing an analytical proton dose-calculation algorithm.
Phys Med Biol. 2007 Aug 7;52(15):4569-84. doi: 10.1088/0031-9155/52/15/014. Epub 2007 Jul 10.
5
7
Validation of a Monte Carlo model for multi leaf collimator based electron delivery.
Med Phys. 2020 Aug;47(8):3586-3599. doi: 10.1002/mp.14194. Epub 2020 May 19.
8
Experimental validation of a Monte Carlo proton therapy nozzle model incorporating magnetically steered protons.
Phys Med Biol. 2009 May 21;54(10):3217-29. doi: 10.1088/0031-9155/54/10/017. Epub 2009 May 6.
9
Determination of the initial beam parameters in Monte Carlo linac simulation.
Med Phys. 2006 Apr;33(4):850-8. doi: 10.1118/1.2168433.
10
Commissioning stereotactic radiosurgery beams using both experimental and theoretical methods.
Phys Med Biol. 2006 May 21;51(10):2549-66. doi: 10.1088/0031-9155/51/10/013. Epub 2006 May 4.

引用本文的文献

1
PARP inhibition radiosensitizes BRCA1 wildtype and mutated breast cancer to proton therapy.
Sci Rep. 2024 Dec 28;14(1):30897. doi: 10.1038/s41598-024-81914-w.
2
ATR inhibition radiosensitizes cells through augmented DNA damage and G2 cell cycle arrest abrogation.
JCI Insight. 2024 Oct 8;9(19):e179599. doi: 10.1172/jci.insight.179599.
3
Targeted Inhibition of DNA-PKcs, ATM, ATR, PARP, and Rad51 Modulate Response to X Rays and Protons.
Radiat Res. 2022 Oct 1;198(4):336-346. doi: 10.1667/RADE-22-00040.1.
4
Proton Therapy for Prostate Cancer: Challenges and Opportunities.
Cancers (Basel). 2022 Feb 13;14(4):925. doi: 10.3390/cancers14040925.
5
A DNA damage multiscale model for NTCP in proton and hadron therapy.
Med Phys. 2020 Apr;47(4):2005-2012. doi: 10.1002/mp.14034. Epub 2020 Feb 10.
6
Sensitivity analysis of Monte Carlo model of a gantry-mounted passively scattered proton system.
J Appl Clin Med Phys. 2020 Feb;21(2):26-37. doi: 10.1002/acm2.12803. Epub 2020 Jan 3.
7
Systematic microdosimetric data for protons of therapeutic energies calculated with Geant4-DNA.
Phys Med Biol. 2019 Nov 4;64(21):215018. doi: 10.1088/1361-6560/ab47cc.
8
Ambient neutron and photon dose equivalent H*(10) around a pencil beam scanning proton therapy facility.
Br J Radiol. 2019 Oct;92(1102):20190382. doi: 10.1259/bjr.20190382. Epub 2019 Jul 23.
9
Proton beam therapy for cancer in the era of precision medicine.
J Hematol Oncol. 2018 Dec 12;11(1):136. doi: 10.1186/s13045-018-0683-4.
10
Comparison of Monte Carlo and analytical dose computations for intensity modulated proton therapy.
Phys Med Biol. 2018 Feb 9;63(4):045003. doi: 10.1088/1361-6560/aaa845.

本文引用的文献

1
Equivalent dose and effective dose from stray radiation during passively scattered proton radiotherapy for prostate cancer.
Phys Med Biol. 2008 Mar 21;53(6):1677-88. doi: 10.1088/0031-9155/53/6/012. Epub 2008 Feb 29.
2
Monte Carlo calculations and measurements of absorbed dose per monitor unit for the treatment of uveal melanoma with proton therapy.
Phys Med Biol. 2008 Mar 21;53(6):1581-94. doi: 10.1088/0031-9155/53/6/005. Epub 2008 Feb 25.
3
Monte Carlo investigation of collimator scatter of proton-therapy beams produced using the passive scattering method.
Phys Med Biol. 2008 Jan 21;53(2):487-504. doi: 10.1088/0031-9155/53/2/014. Epub 2007 Dec 28.
5
Is a 3-mm intrafractional margin sufficient for daily image-guided intensity-modulated radiation therapy of prostate cancer?
Radiother Oncol. 2007 Nov;85(2):251-9. doi: 10.1016/j.radonc.2007.08.008. Epub 2007 Sep 24.
6
Dosimetric impact of tantalum markers used in the treatment of uveal melanoma with proton beam therapy.
Phys Med Biol. 2007 Jul 7;52(13):3979-90. doi: 10.1088/0031-9155/52/13/021. Epub 2007 Jun 6.
7
Monte Carlo simulations for configuring and testing an analytical proton dose-calculation algorithm.
Phys Med Biol. 2007 Aug 7;52(15):4569-84. doi: 10.1088/0031-9155/52/15/014. Epub 2007 Jul 10.
8
Monte Carlo study of neutron dose equivalent during passive scattering proton therapy.
Phys Med Biol. 2007 Aug 7;52(15):4481-96. doi: 10.1088/0031-9155/52/15/008. Epub 2007 Jun 27.
9
Changes in the pelvic anatomy after an IMRT treatment fraction of prostate cancer.
Int J Radiat Oncol Biol Phys. 2007 Aug 1;68(5):1529-36. doi: 10.1016/j.ijrobp.2007.01.069. Epub 2007 Jun 4.
10
Monte Carlo simulations of the dosimetric impact of radiopaque fiducial markers for proton radiotherapy of the prostate.
Phys Med Biol. 2007 Jun 7;52(11):2937-52. doi: 10.1088/0031-9155/52/11/001. Epub 2007 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验