Suppr超能文献

铅笔束扫描质子治疗设施周围环境中子和光子剂量当量 H*(10)。

Ambient neutron and photon dose equivalent H*(10) around a pencil beam scanning proton therapy facility.

机构信息

Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, Tamil Nadu, India.

Department of Radiation Oncology, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, Tamil Nadu, India.

出版信息

Br J Radiol. 2019 Oct;92(1102):20190382. doi: 10.1259/bjr.20190382. Epub 2019 Jul 23.

Abstract

OBJECTIVES

To measure leakage ambient dose equivalent H*(10) from stray secondary neutron and photon radiation around proton therapy (PT) facility and evaluate adequacy of shielding design.

METHODS AND MATERIALS

H*(10) measurement were carried out at 149 locations around cyclotron vault (CV), beam transport system (BTS) and first treatment room (GTR3) of a multiroom PT facility using WENDI-II and SmartIon survey meter. Measurement were performed under extreme case scenarios wherein maximum secondary neutrons and photons were produced around CV, BTS and GTR3 by stopping 230MeV proton of 300nA on beam degrader, end of BTS and isocenter of GTR3. Weekly time average dose rate (TADR) were calculated from H*(10) value measured at selective hot spots by irradiating actual treatment plans of mix clinical sites.

RESULTS

The maximum total H*(10) were within 2 µSv/hr around CV, 5 µSv/hr around outer wall of BTS which increases up to 62 µSv/hr at the end of inside BTS corridor. Maximum H*(10) of 20.8 µSv/hr in treatment control console (P125), 23.4 µSv/hr behind the common wall between GTR3 and GTR2 (P132) and 25.7 µSv/hr above isocenter (P99) were observed around GTR3. Reduction of beam current from 6 to 3 nA and 1 nA at nozzle exit lead to decrease in total H*(10) at P125 from 20.8 to 11.35 and 4.62 µSv/hr. In comparison to extreme case scenario, H*(10) value at P125, P132 and P99 from clinically relevant irradiation parameters were reduce by a factor ranging from 8.6 for high range cube to 46.4 for brain clinical plan. The maximum weekly TADR per fraction was highest for large volume, sacral chordoma patient at 8.5 µSv/hr compare to 0.3 µSv/hr for brain patient. The calculated weekly TADR for 30 mix clinical cases and 15 fractions of 1 L cube resulted total weekly TADR of 83-84 µSv/hr at P125, P132 and P99. The maximum annual dose level at these hot spots were estimated at 4.37 mSv/Yr.

CONCLUSION

We have carried out an extensive measurement of H*(10) under different conditions. The shielding thickness of our PT facility is adequate to limit the dose to occupational worker and general public within the permissible stipulated limit. The data reported here can bridge the knowledge gap in ambient dose around PT facility and can also be used as a reference for any new and existing proton facility for intercomparison and validation.

ADVANCES IN KNOWLEDGE

First extensive investigation of neutron and photon H*(10) around PT facility and can bridge the knowledge gap on ambient dose.

摘要

目的

测量质子治疗(PT)设施周围散射线中子和光子周围环境剂量当量 H*(10),并评估屏蔽设计的充分性。

方法与材料

使用 WENDI-II 和 SmartIon 测量仪,在回旋加速器拱顶(CV)、束传输系统(BTS)和第一治疗室(GTR3)周围的 149 个位置,在 CV、BTS 和 GTR3 周围最大程度地产生二次中子和光子的极端情况下进行 H*(10)测量,通过在束衰减器、BTS 末端和 GTR3 的等中心点上停止 230MeV 的 300nA 质子。通过辐照混合临床部位的实际治疗计划,从选择性热点测量的 H*(10)值计算每周时间平均剂量率(TADR)。

结果

CV 周围的最大总 H*(10)在 2 µSv/hr 以内,BTS 外墙周围的最大 H*(10)在 5 µSv/hr 以内,BTS 内部走廊末端增加到 62 µSv/hr。在 GTR3 周围,观察到治疗控制台(P125)的最大 H*(10)为 20.8 µSv/hr,GTR3 和 GTR2 之间公共墙后面的最大 H*(10)为 23.4 µSv/hr(P132),等中心点上方的最大 H*(10)为 25.7 µSv/hr(P99)。将束流从 6 降低到 3 和 1 nA 在喷嘴出口处,P125 的总 H*(10)从 20.8 减少到 11.35 和 4.62 µSv/hr。与极端情况相比,临床相关照射参数下 P125、P132 和 P99 的 H*(10) 值降低了 8.6 倍(高范围立方)到 46.4 倍(脑临床计划)。对于大体积、骶骨脊索瘤患者,每个分数的最大每周 TADR 最高,为 8.5 µSv/hr,而脑患者为 0.3 µSv/hr。对于 30 个混合临床病例和 15 个 1 L 立方的分数,P125、P132 和 P99 的总每周 TADR 为 83-84 µSv/hr。这些热点的最大年剂量水平估计为 4.37 mSv/Yr。

结论

我们在不同条件下进行了广泛的 H*(10)测量。我们的 PT 设施的屏蔽厚度足以将职业工人和公众的剂量限制在允许规定的限制内。这里报告的数据可以填补 PT 设施周围环境剂量的知识空白,也可以作为任何新的和现有的质子设施的参考,用于比较和验证。

知识进步

首次对 PT 设施周围的中子和光子 H*(10)进行广泛调查,并可以填补环境剂量的知识空白。

相似文献

1
Ambient neutron and photon dose equivalent H*(10) around a pencil beam scanning proton therapy facility.
Br J Radiol. 2019 Oct;92(1102):20190382. doi: 10.1259/bjr.20190382. Epub 2019 Jul 23.
3
Neutron H*(10) inside a proton therapy facility: comparison between Monte Carlo simulations and WENDI-2 measurements.
Radiat Prot Dosimetry. 2014 Oct;161(1-4):417-21. doi: 10.1093/rpd/nct289. Epub 2013 Nov 19.
5
An indirect in vivo dosimetry system for ocular proton therapy.
Radiat Prot Dosimetry. 2014 Oct;161(1-4):373-6. doi: 10.1093/rpd/nct284. Epub 2013 Nov 11.
6
Shielding verification and neutron dose evaluation of the Mevion S250 proton therapy unit.
J Appl Clin Med Phys. 2018 Mar;19(2):305-310. doi: 10.1002/acm2.12256. Epub 2018 Feb 22.
7
Evaluation and Mitigation of Secondary Dose Delivered to Electronic Systems in Proton Therapy.
Technol Cancer Res Treat. 2016 Feb;15(1):3-11. doi: 10.1177/1533034614567369. Epub 2015 Jan 23.
9
Systematic out-of-field secondary neutron spectrometry and dosimetry in pencil beam scanning proton therapy.
Med Phys. 2017 May;44(5):1912-1920. doi: 10.1002/mp.12206. Epub 2017 Apr 20.
10
Neutron shielding for a new projected proton therapy facility: A Geant4 simulation study.
Phys Med. 2016 Dec;32(12):1862-1871. doi: 10.1016/j.ejmp.2016.12.003.

引用本文的文献

1
Secondary neutron dosimetry for conformal FLASH proton therapy.
Med Phys. 2024 Jul;51(7):5081-5093. doi: 10.1002/mp.17050. Epub 2024 Apr 10.

本文引用的文献

3
The physics of proton therapy.
Phys Med Biol. 2015 Apr 21;60(8):R155-209. doi: 10.1088/0031-9155/60/8/R155. Epub 2015 Mar 24.
4
Neutron H*(10) inside a proton therapy facility: comparison between Monte Carlo simulations and WENDI-2 measurements.
Radiat Prot Dosimetry. 2014 Oct;161(1-4):417-21. doi: 10.1093/rpd/nct289. Epub 2013 Nov 19.
5
Charged particle therapy--optimization, challenges and future directions.
Nat Rev Clin Oncol. 2013 Jul;10(7):411-24. doi: 10.1038/nrclinonc.2013.79. Epub 2013 May 21.
6
Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system.
Phys Med Biol. 2009 Feb 21;54(4):993-1008. doi: 10.1088/0031-9155/54/4/012. Epub 2009 Jan 16.
8
Assessment of the accuracy of an MCNPX-based Monte Carlo simulation model for predicting three-dimensional absorbed dose distributions.
Phys Med Biol. 2008 Aug 21;53(16):4455-70. doi: 10.1088/0031-9155/53/16/016. Epub 2008 Jul 31.
10
WENDI: an improved neutron rem meter.
Health Phys. 2000 Aug;79(2):170-81. doi: 10.1097/00004032-200008000-00010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验