Suppr超能文献

基于神经网络的模式匹配与尖峰检测工具及服务——在CARMEN神经信息学项目中。

Neural network based pattern matching and spike detection tools and services--in the CARMEN neuroinformatics project.

作者信息

Fletcher Martyn, Liang Bojian, Smith Leslie, Knowles Alastair, Jackson Tom, Jessop Mark, Austin Jim

机构信息

Advanced Computer Architectures Group, Department of Computer Science, University of York, Heslington, York, YO10 5DD, UK.

出版信息

Neural Netw. 2008 Oct;21(8):1076-84. doi: 10.1016/j.neunet.2008.06.009. Epub 2008 Jun 27.

Abstract

In the study of information flow in the nervous system, component processes can be investigated using a range of electrophysiological and imaging techniques. Although data is difficult and expensive to produce, it is rarely shared and collaboratively exploited. The Code Analysis, Repository and Modelling for e-Neuroscience (CARMEN) project addresses this challenge through the provision of a virtual neuroscience laboratory: an infrastructure for sharing data, tools and services. Central to the CARMEN concept are federated CARMEN nodes, which provide: data and metadata storage, new, thirdparty and legacy services, and tools. In this paper, we describe the CARMEN project as well as the node infrastructure and an associated thick client tool for pattern visualisation and searching, the Signal Data Explorer (SDE). We also discuss new spike detection methods, which are central to the services provided by CARMEN. The SDE is a client application which can be used to explore data in the CARMEN repository, providing data visualization, signal processing and a pattern matching capability. It performs extremely fast pattern matching and can be used to search for complex conditions composed of many different patterns across the large datasets that are typical in neuroinformatics. Searches can also be constrained by specifying text based metadata filters. Spike detection services which use wavelet and morphology techniques are discussed, and have been shown to outperform traditional thresholding and template based systems. A number of different spike detection and sorting techniques will be deployed as services within the CARMEN infrastructure, to allow users to benchmark their performance against a wide range of reference datasets.

摘要

在神经系统信息流的研究中,可以使用一系列电生理和成像技术来研究组成过程。尽管数据的生成困难且成本高昂,但很少有人共享和协作利用这些数据。电子神经科学的代码分析、存储库与建模(CARMEN)项目通过提供一个虚拟神经科学实验室来应对这一挑战:这是一个用于共享数据、工具和服务的基础设施。CARMEN概念的核心是联合的CARMEN节点,这些节点提供:数据和元数据存储、新的、第三方和遗留服务以及工具。在本文中,我们描述了CARMEN项目以及节点基础设施和一个用于模式可视化和搜索的相关胖客户端工具——信号数据浏览器(SDE)。我们还讨论了新的尖峰检测方法,这些方法是CARMEN提供的服务的核心。SDE是一个客户端应用程序,可用于探索CARMEN存储库中的数据,提供数据可视化、信号处理和模式匹配功能。它执行极快速的模式匹配,可用于搜索由许多不同模式组成的复杂条件,这些条件跨越神经信息学中典型的大型数据集。搜索也可以通过指定基于文本的元数据过滤器来进行约束。讨论了使用小波和形态学技术的尖峰检测服务,并且已证明其性能优于传统的阈值化和基于模板的系统。许多不同的尖峰检测和分类技术将作为服务部署在CARMEN基础设施中,以允许用户根据广泛的参考数据集对其性能进行基准测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验