Suppr超能文献

一种用于细胞外记录数据的平稳小波变换和基于时频的尖峰检测算法。

A stationary wavelet transform and a time-frequency based spike detection algorithm for extracellular recorded data.

作者信息

Lieb Florian, Stark Hans-Georg, Thielemann Christiane

机构信息

Aschaffenburg University of Applied Sciences, 63743 Aschaffenburg, Germany.

出版信息

J Neural Eng. 2017 Jun;14(3):036013. doi: 10.1088/1741-2552/aa654b. Epub 2017 Mar 8.

Abstract

OBJECTIVE

Spike detection from extracellular recordings is a crucial preprocessing step when analyzing neuronal activity. The decision whether a specific part of the signal is a spike or not is important for any kind of other subsequent preprocessing steps, like spike sorting or burst detection in order to reduce the classification of erroneously identified spikes. Many spike detection algorithms have already been suggested, all working reasonably well whenever the signal-to-noise ratio is large enough. When the noise level is high, however, these algorithms have a poor performance.

APPROACH

In this paper we present two new spike detection algorithms. The first is based on a stationary wavelet energy operator and the second is based on the time-frequency representation of spikes. Both algorithms are more reliable than all of the most commonly used methods.

MAIN RESULTS

The performance of the algorithms is confirmed by using simulated data, resembling original data recorded from cortical neurons with multielectrode arrays. In order to demonstrate that the performance of the algorithms is not restricted to only one specific set of data, we also verify the performance using a simulated publicly available data set. We show that both proposed algorithms have the best performance under all tested methods, regardless of the signal-to-noise ratio in both data sets.

SIGNIFICANCE

This contribution will redound to the benefit of electrophysiological investigations of human cells. Especially the spatial and temporal analysis of neural network communications is improved by using the proposed spike detection algorithms.

摘要

目的

从细胞外记录中检测尖峰是分析神经元活动时至关重要的预处理步骤。对于信号的特定部分是否为尖峰的判断,对于任何后续的预处理步骤(如尖峰分类或爆发检测)都很重要,以便减少错误识别尖峰的分类。已经提出了许多尖峰检测算法,只要信噪比足够大,它们都能合理地工作。然而,当噪声水平较高时,这些算法的性能较差。

方法

在本文中,我们提出了两种新的尖峰检测算法。第一种基于平稳小波能量算子,第二种基于尖峰的时频表示。这两种算法都比所有最常用的方法更可靠。

主要结果

通过使用模拟数据(类似于用多电极阵列从皮质神经元记录的原始数据)来证实算法的性能。为了证明算法的性能不限于一组特定的数据,我们还使用一个公开可用的模拟数据集验证了性能。我们表明,无论两个数据集中的信噪比如何,所提出的两种算法在所有测试方法中都具有最佳性能。

意义

这一贡献将有助于人类细胞的电生理研究。特别是通过使用所提出的尖峰检测算法,神经网络通信的时空分析得到了改善。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验