BrainTech Laboratory U1205, INSERM, 2280 Rue de la Piscine, 38400 Saint-Martin-d'Hères, France.
BrainTech Laboratory U1205, Université Grenoble Alpes, 2280 rue de la piscine, 38400 Saint-Martin-d'Hères, France.
Int J Neural Syst. 2019 Oct;29(8):1850059. doi: 10.1142/S0129065718500594. Epub 2018 Dec 27.
Bio-inspired computing using artificial spiking neural networks promises performances outperforming currently available computational approaches. Yet, the number of applications of such networks remains limited due to the absence of generic training procedures for complex pattern recognition, which require the design of dedicated architectures for each situation. We developed a spike-timing-dependent plasticity (STDP) spiking neural network (SSN) to address spike-sorting, a central pattern recognition problem in neuroscience. This network is designed to process an extracellular neural signal in an online and unsupervised fashion. The signal stream is continuously fed to the network and processed through several layers to output spike trains matching the truth after a short learning period requiring only few data. The network features an attention mechanism to handle the scarcity of action potential occurrences in the signal, and a threshold adaptation mechanism to handle patterns with different sizes. This method outperforms two existing spike-sorting algorithms at low signal-to-noise ratio (SNR) and can be adapted to process several channels simultaneously in the case of tetrode recordings. Such attention-based STDP network applied to spike-sorting opens perspectives to embed neuromorphic processing of neural data in future brain implants.
基于人工尖峰神经网络的仿生计算有望实现优于现有计算方法的性能。然而,由于缺乏用于复杂模式识别的通用训练程序,此类网络的应用仍然有限,而复杂模式识别需要为每种情况设计专用架构。我们开发了一种基于尖峰时间依赖性可塑性(STDP)的尖峰神经网络(SSN)来解决神经科学中的中央模式识别问题——尖峰排序。该网络旨在以在线和无监督的方式处理细胞外神经信号。信号流不断地输入到网络中,并通过几个层进行处理,在短的学习周期后输出与真实情况匹配的尖峰序列,只需要少量数据。该网络具有注意力机制,可以处理信号中动作电位出现的稀缺性,以及阈值自适应机制,可以处理具有不同大小的模式。在低信噪比(SNR)下,该方法优于两种现有的尖峰排序算法,并且在四极管记录的情况下可以同时处理多个通道。这种基于注意力的 STDP 网络应用于尖峰排序,为未来的脑植入物中神经数据的神经形态处理开辟了前景。