Alcántara Cristina, Sarmiento-Rubiano Luz Adriana, Monedero Vicente, Deutscher Josef, Pérez-Martínez Gaspar, Yebra María J
Laboratorio de Bacterias Lácticas y Probióticos, IATA-CSIC, P.O. Box 73, 46100 Burjassot, Valencia, Spain.
Appl Environ Microbiol. 2008 Sep;74(18):5731-40. doi: 10.1128/AEM.00230-08. Epub 2008 Aug 1.
Sequence analysis of the five genes (gutRMCBA) downstream from the previously described sorbitol-6-phosphate dehydrogenase-encoding Lactobacillus casei gutF gene revealed that they constitute a sorbitol (glucitol) utilization operon. The gutRM genes encode putative regulators, while the gutCBA genes encode the EIIC, EIIBC, and EIIA proteins of a phosphoenolpyruvate-dependent sorbitol phosphotransferase system (PTS(Gut)). The gut operon is transcribed as a polycistronic gutFRMCBA messenger, the expression of which is induced by sorbitol and repressed by glucose. gutR encodes a transcriptional regulator with two PTS-regulated domains, a galactitol-specific EIIB-like domain (EIIB(Gat) domain) and a mannitol/fructose-specific EIIA-like domain (EIIA(Mtl) domain). Its inactivation abolished gut operon transcription and sorbitol uptake, indicating that it acts as a transcriptional activator. In contrast, cells carrying a gutB mutation expressed the gut operon constitutively, but they failed to transport sorbitol, indicating that EIIBC(Gut) negatively regulates GutR. A footprint analysis showed that GutR binds to a 35-bp sequence upstream from the gut promoter. A sequence comparison with the presumed promoter region of gut operons from various firmicutes revealed a GutR consensus motif that includes an inverted repeat. The regulation mechanism of the L. casei gut operon is therefore likely to be operative in other firmicutes. Finally, gutM codes for a conserved protein of unknown function present in all sequenced gut operons. A gutM mutant, the first constructed in a firmicute, showed drastically reduced gut operon expression and sorbitol uptake, indicating a regulatory role also for GutM.
对先前描述的编码山梨醇-6-磷酸脱氢酶的干酪乳杆菌gutF基因下游的五个基因(gutRMCBA)进行序列分析,结果显示它们构成了一个山梨醇(葡糖醇)利用操纵子。gutRM基因编码假定的调节因子,而gutCBA基因编码磷酸烯醇丙酮酸依赖性山梨醇磷酸转移酶系统(PTS(Gut))的EIIC、EIIBC和EIIA蛋白。gut操纵子转录为多顺反子gutFRMCBA信使RNA,其表达受山梨醇诱导并受葡萄糖抑制。gutR编码一种具有两个PTS调节结构域(一个半乳糖醇特异性EIIB样结构域(EIIB(Gat)结构域)和一个甘露醇/果糖特异性EIIA样结构域(EIIA(Mtl)结构域))的转录调节因子。其失活消除了gut操纵子的转录和山梨醇摄取,表明它作为转录激活因子发挥作用。相反,携带gutB突变的细胞组成型表达gut操纵子,但它们无法转运山梨醇,表明EIIBC(Gut)对GutR起负调节作用。足迹分析表明GutR与gut启动子上游的一个35 bp序列结合。与来自各种厚壁菌门的gut操纵子假定启动子区域的序列比较揭示了一个包含反向重复的GutR共有基序。因此,干酪乳杆菌gut操纵子的调节机制可能在其他厚壁菌门中也起作用。最后,gutM编码所有已测序gut操纵子中存在的一种功能未知的保守蛋白。在厚壁菌门中构建的第一个gutM突变体显示gut操纵子表达和山梨醇摄取大幅降低,表明GutM也具有调节作用。