Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, IATA-CSIC, Valencia, Spain.
Appl Environ Microbiol. 2012 Jul;78(13):4613-9. doi: 10.1128/AEM.00474-12. Epub 2012 Apr 27.
We have previously characterized from Lactobacillus casei BL23 three α-L-fucosidases, AlfA, AlfB, and AlfC, which hydrolyze in vitro natural fucosyl-oligosaccharides. In this work, we have shown that L. casei is able to grow in the presence of fucosyl-α-1,3-N-acetylglucosamine (Fuc-α-1,3-GlcNAc) as a carbon source. Interestingly, L. casei excretes the L-fucose moiety during growth on Fuc-α-1,3-GlcNAc, indicating that only the N-acetylglucosamine moiety is being metabolized. Analysis of the genomic sequence of L. casei BL23 shows that downstream from alfB, which encodes the α-L-fucosidase AlfB, a gene, alfR, that encodes a transcriptional regulator is present. Divergently from alfB, three genes, alfEFG, that encode proteins with homology to the enzyme IIAB (EIIAB), EIIC, and EIID components of a mannose-class phosphoenolpyruvate:sugar phosphotransferase system (PTS) are present. Inactivation of either alfB or alfF abolishes the growth of L. casei on Fuc-α-1,3-GlcNAc. This proves that AlfB is involved in Fuc-α-1,3-GlcNAc metabolism and that the transporter encoded by alfEFG participates in the uptake of this disaccharide. A mutation in the PTS general component enzyme I does not eliminate the utilization of Fuc-α-1,3-GlcNAc, suggesting that the transport via the PTS encoded by alfEFG is not coupled to phosphorylation of the disaccharide. Transcriptional analysis with alfR and ccpA mutants shows that the two gene clusters alfBR and alfEFG are regulated by substrate-specific induction mediated by the inactivation of the transcriptional repressor AlfR and by carbon catabolite repression mediated by the catabolite control protein A (CcpA). This work reports for the first time the characterization of the physiological role of an α-L-fucosidase in lactic acid bacteria and the utilization of Fuc-α-1,3-GlcNAc as a carbon source for bacteria.
我们先前从干酪乳杆菌 BL23 中鉴定了三种 α-L-岩藻糖苷酶,AlfA、AlfB 和 AlfC,它们可以体外水解天然岩藻糖基-寡糖。在这项工作中,我们表明干酪乳杆菌能够在以岩藻糖-α-1,3-N-乙酰氨基葡萄糖(Fuc-α-1,3-GlcNAc)为碳源的情况下生长。有趣的是,干酪乳杆菌在生长过程中会排出 L-岩藻糖部分,这表明只有 N-乙酰氨基葡萄糖部分被代谢。对干酪乳杆菌 BL23 的基因组序列分析表明,在编码 α-L-岩藻糖苷酶 AlfB 的 alfB 下游,存在一个编码转录调节剂 alfR 的基因。与 alfB 不同,有三个基因 alfEFG 存在,它们编码与酶 IIAB(EIIAB)、EIIC 和 EIID 具有同源性的蛋白质,这些蛋白质是甘露糖类磷酸烯醇丙酮酸:糖磷酸转移酶系统(PTS)的组成部分。无论是 alfB 还是 alfF 的失活都会导致干酪乳杆菌无法在 Fuc-α-1,3-GlcNAc 上生长。这证明了 AlfB 参与了 Fuc-α-1,3-GlcNAc 的代谢,并且由 alfEFG 编码的转运体参与了这种二糖的摄取。在 PTS 通用成分酶 I 的突变体中,利用 Fuc-α-1,3-GlcNAc 并没有被消除,这表明 alfEFG 编码的 PTS 运输与二糖的磷酸化没有偶联。用 alfR 和 ccpA 突变体进行转录分析表明,两个基因簇 alfBR 和 alfEFG 受转录抑制剂 AlfR 失活介导的底物特异性诱导和代谢物控制蛋白 A(CcpA)介导的碳分解代谢物阻遏的调节。这项工作首次报道了乳酸杆菌中 α-L-岩藻糖苷酶的生理作用特征以及细菌利用 Fuc-α-1,3-GlcNAc 作为碳源。