Qian Xiaoning, Brennan Matthew P, Dione Donald P, Dobrucki Wawrzyniec L, Jackowski Marcel P, Breuer Christopher K, Sinusas Albert J, Papademetris Xenophon
Department of Diagnostic Radiology, Yale University, New Haven, CT 06520-8043, USA.
Med Image Anal. 2009 Feb;13(1):49-61. doi: 10.1016/j.media.2008.05.005. Epub 2008 Jun 14.
Modern medical imaging techniques enable the acquisition of in vivo high resolution images of the vascular system. Most common methods for the detection of vessels in these images, such as multiscale Hessian-based operators and matched filters, rely on the assumption that at each voxel there is a single cylinder. Such an assumption is clearly violated at the multitude of branching points that are easily observed in all, but the most focused vascular image studies. In this paper, we propose a novel method for detecting vessels in medical images that relaxes this single cylinder assumption. We directly exploit local neighborhood intensities and extract characteristics of the local intensity profile (in a spherical polar coordinate system) which we term as the polar neighborhood intensity profile. We present a new method to capture the common properties shared by polar neighborhood intensity profiles for all the types of vascular points belonging to the vascular system. The new method enables us to detect vessels even near complex extreme points, including branching points. Our method demonstrates improved performance over standard methods on both 2D synthetic images and 3D animal and clinical vascular images, particularly close to vessel branching regions.
现代医学成像技术能够获取血管系统的体内高分辨率图像。在这些图像中检测血管的最常见方法,如基于多尺度黑塞矩阵的算子和匹配滤波器,都依赖于这样一种假设:在每个体素处存在一个单一的圆柱体。在所有(除了最聚焦的血管图像研究)容易观察到的众多分支点处,这种假设显然被违背了。在本文中,我们提出了一种用于检测医学图像中血管的新方法,该方法放宽了这种单一圆柱体假设。我们直接利用局部邻域强度,并提取局部强度轮廓(在球极坐标系中)的特征,我们将其称为极邻域强度轮廓。我们提出了一种新方法来捕捉属于血管系统的所有类型血管点的极邻域强度轮廓所共有的共同属性。这种新方法使我们能够在包括分支点在内的复杂极值点附近检测血管。我们的方法在二维合成图像以及三维动物和临床血管图像上均显示出比标准方法更好的性能,特别是在靠近血管分支区域的地方。