Department of Neurosurgery, Clinical Neuroscience Center and University of Zürich, University Hospital Zurich, Frauenklinikstrasse 10, 8091, Zürich, ZH, Switzerland.
Prinses Màxima Center, Department of Neurosurgery, Utrecht, CS, The Netherlands.
Radiol Med. 2022 Dec;127(12):1333-1341. doi: 10.1007/s11547-022-01567-5. Epub 2022 Oct 18.
BACKGROUND: Visualization, analysis and characterization of the angioarchitecture of a brain arteriovenous malformation (bAVM) present crucial steps for understanding and management of these complex lesions. Three-dimensional (3D) segmentation and 3D visualization of bAVMs play hereby a significant role. We performed a systematic review regarding currently available 3D segmentation and visualization techniques for bAVMs. METHODS: PubMed, Embase and Google Scholar were searched to identify studies reporting 3D segmentation techniques applied to bAVM characterization. Category of input scan, segmentation (automatic, semiautomatic, manual), time needed for segmentation and 3D visualization techniques were noted. RESULTS: Thirty-three studies were included. Thirteen (39%) used MRI as baseline imaging modality, 9 used DSA (27%), and 7 used CT (21%). Segmentation through automatic algorithms was used in 20 (61%), semiautomatic segmentation in 6 (18%), and manual segmentation in 7 (21%) studies. Median automatic segmentation time was 10 min (IQR 33), semiautomatic 25 min (IQR 73). Manual segmentation time was reported in only one study, with the mean of 5-10 min. Thirty-two (97%) studies used screens to visualize the 3D segmentations outcomes and 1 (3%) study utilized a heads-up display (HUD). Integration with mixed reality was used in 4 studies (12%). CONCLUSIONS: A golden standard for 3D visualization of bAVMs does not exist. This review describes a tendency over time to base segmentation on algorithms trained with machine learning. Unsupervised fuzzy-based algorithms thereby stand out as potential preferred strategy. Continued efforts will be necessary to improve algorithms, integrate complete hemodynamic assessment and find innovative tools for tridimensional visualization.
背景:可视化、分析和描述脑动静脉畸形(bAVM)的血管结构对于理解和管理这些复杂病变至关重要。三维(3D)分割和 3D 可视化在此过程中起着重要作用。我们对目前用于 bAVM 的 3D 分割和可视化技术进行了系统评价。
方法:在 PubMed、Embase 和 Google Scholar 上进行检索,以确定报告应用于 bAVM 特征描述的 3D 分割技术的研究。记录输入扫描的类别、分割方法(自动、半自动、手动)、分割所需时间和 3D 可视化技术。
结果:共纳入 33 项研究。13 项(39%)研究使用 MRI 作为基线成像方式,9 项(27%)使用 DSA,7 项(21%)使用 CT。20 项(61%)研究采用自动算法进行分割,6 项(18%)研究采用半自动分割,7 项(21%)研究采用手动分割。自动分割的中位数时间为 10 分钟(IQR 33),半自动分割为 25 分钟(IQR 73)。仅有一项研究报告了手动分割的时间,平均为 5-10 分钟。32 项(97%)研究使用屏幕来可视化 3D 分割结果,1 项(3%)研究使用平视显示器(HUD)。有 4 项研究(12%)使用混合现实进行了集成。
结论:目前不存在 bAVM 3D 可视化的金标准。本综述描述了随着时间的推移,基于机器学习训练的算法进行分割的趋势。无监督模糊基算法因此成为潜在的首选策略。需要继续努力改进算法,整合完整的血流动力学评估,并寻找创新的三维可视化工具。
Health Technol Assess. 2006-6
Cochrane Database Syst Rev. 2018-1-22
Health Technol Assess. 2001
Cochrane Database Syst Rev. 2022-5-20
Health Technol Assess. 2006-9
Cochrane Database Syst Rev. 2018-1-16
Acta Neurochir Suppl. 2025
Diagnostics (Basel). 2024-6-23
Cardiovasc Eng Technol. 2023-12
J Pers Med. 2023-1-10
J Craniofac Surg. 2021-5-1
Asian J Neurosurg. 2019-11-25
Med Image Anal. 2019-5