Heddi Brahim, Foloppe Nicolas, Oguey Christophe, Hartmann Brigitte
Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
J Mol Biol. 2008 Oct 17;382(4):956-70. doi: 10.1016/j.jmb.2008.07.047. Epub 2008 Jul 25.
Understanding the recognition of DNA sequences by proteins requires an accurate description of the structural dynamics of free DNA, especially regarding indirect readout. This involves subtle sequence-dependent effects that are difficult to characterize in solution. To progress in this area, we applied NMR and extensive simulations to a DNA sequence relevant to the Jun-Fos system. The backbone and base behaviors demonstrate that unrestrained simulations with major force fields (Parm98, Parmbsc0, and CHARMM27) are not reliable enough for in silico predictions of detailed DNA structures. More realistic structures required molecular dynamics simulations supplemented by NMR restraints. A new methodological element involved restraints inferred from the phosphate chemical shifts and from the phosphate dynamics. This provided a detailed and dynamic view of the intrinsic properties of the free DNA sequence that can be related to its recognition, by comparison with a relevant DNA-protein complex. We show how to exploit the relationship between phosphate motions and helicoidal descriptors for structure determination toward an accurate description of DNA structures and dynamics in solution.
理解蛋白质对DNA序列的识别需要精确描述游离DNA的结构动力学,尤其是关于间接识别。这涉及到难以在溶液中表征的微妙的序列依赖性效应。为了在这一领域取得进展,我们将核磁共振(NMR)和广泛的模拟应用于与Jun-Fos系统相关的DNA序列。主链和碱基行为表明,使用主要力场(Parm98、Parmbsc0和CHARMM27)进行的无约束模拟对于在计算机上预测详细的DNA结构不够可靠。更真实的结构需要通过NMR约束补充的分子动力学模拟。一个新的方法要素涉及从磷酸化学位移和磷酸动力学推断出的约束。通过与相关的DNA-蛋白质复合物进行比较,这提供了游离DNA序列内在特性的详细动态视图,该视图可与其识别相关。我们展示了如何利用磷酸运动和螺旋描述符之间的关系进行结构测定,以准确描述溶液中DNA的结构和动力学。