Suppr超能文献

从磷酸化学位移看 DNA 结构。

DNA structures from phosphate chemical shifts.

机构信息

INTS, INSERM S-665, Paris 75005, France.

出版信息

Nucleic Acids Res. 2010 Jan;38(3):e18. doi: 10.1093/nar/gkp1061. Epub 2009 Nov 26.

Abstract

For B-DNA, the strong linear correlation observed by nuclear magnetic resonance (NMR) between the (31)P chemical shifts (deltaP) and three recurrent internucleotide distances demonstrates the tight coupling between phosphate motions and helicoidal parameters. It allows to translate deltaP into distance restraints directly exploitable in structural refinement. It even provides a new method for refining DNA oligomers with restraints exclusively inferred from deltaP. Combined with molecular dynamics in explicit solvent, these restraints lead to a structural and dynamical view of the DNA as detailed as that obtained with conventional and more extensive restraints. Tests with the Jun-Fos oligomer show that this deltaP-based strategy can provide a simple and straightforward method to capture DNA properties in solution, from routine NMR experiments on unlabeled samples.

摘要

对于 B-DNA,核磁共振(NMR)观察到的(31)P 化学位移(δP)与三个反复出现的核苷酸间距离之间的强线性相关,证明了磷酸基团运动与螺旋参数之间的紧密耦合。它允许将 δP 直接转化为可用于结构精修的距离约束。它甚至为仅从 δP 推断出约束的 DNA 低聚物的精修提供了一种新方法。与显式溶剂中的分子动力学相结合,这些约束为 DNA 提供了与使用常规和更广泛的约束获得的一样详细的结构和动态视图。使用 Jun-Fos 低聚物的测试表明,这种基于 δP 的策略可以为从未标记样品的常规 NMR 实验中,在溶液中捕获 DNA 性质提供一种简单而直接的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0657/2817473/e392a1d07773/gkp1061f1.jpg

相似文献

1
DNA structures from phosphate chemical shifts.
Nucleic Acids Res. 2010 Jan;38(3):e18. doi: 10.1093/nar/gkp1061. Epub 2009 Nov 26.
2
Importance of accurate DNA structures in solution: the Jun-Fos model.
J Mol Biol. 2008 Oct 17;382(4):956-70. doi: 10.1016/j.jmb.2008.07.047. Epub 2008 Jul 25.
3
The DNA structure responds differently to physiological concentrations of K(+) or Na(+).
J Mol Biol. 2007 May 18;368(5):1403-11. doi: 10.1016/j.jmb.2007.03.010. Epub 2007 Mar 12.
4
Transcription. Zen and the art of Fos and Jun.
Nature. 1995 Jan 19;373(6511):199-200. doi: 10.1038/373199a0.
5
Conformation of the c-Fos/c-Jun complex in vivo: a combined FRET, FCCS, and MD-modeling study.
Biophys J. 2008 Apr 1;94(7):2859-68. doi: 10.1529/biophysj.107.120766. Epub 2007 Dec 7.
6
DNA bending determines Fos-Jun heterodimer orientation.
Nat Struct Biol. 1998 Oct;5(10):877-81. doi: 10.1038/2316.
7
Using NMR chemical shifts as structural restraints in molecular dynamics simulations of proteins.
Structure. 2010 Aug 11;18(8):923-33. doi: 10.1016/j.str.2010.04.016.
8
Identification of amino acid residues in the ETS transcription factor Erg that mediate Erg-Jun/Fos-DNA ternary complex formation.
J Biol Chem. 2001 May 18;276(20):17181-9. doi: 10.1074/jbc.M010208200. Epub 2001 Feb 23.
9
DNA-binding domains of Fos and Jun do not induce DNA curvature: an investigation with solution and gel methods.
Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1404-9. doi: 10.1073/pnas.95.4.1404.

引用本文的文献

1
P Dynamic Nuclear Polarization through the Solid Effect: Study of Biomolecules in Aqueous Solutions at 9.4 T.
Anal Chem. 2025 Jul 22;97(28):14890-14893. doi: 10.1021/acs.analchem.5c02158. Epub 2025 Jul 9.
3
Sequence-dependent structural properties of B-DNA: what have we learned in 40 years?
Biophys Rev. 2021 Nov 13;13(6):995-1005. doi: 10.1007/s12551-021-00893-8. eCollection 2021 Dec.
4
Phosphorus NMR and Its Application to Metabolomics.
Anal Chem. 2020 Jul 21;92(14):9536-9545. doi: 10.1021/acs.analchem.0c00591. Epub 2020 Jun 29.
6
Automatic workflow for the classification of local DNA conformations.
BMC Bioinformatics. 2013 Jun 25;14:205. doi: 10.1186/1471-2105-14-205.
7
Engineering of a target site-specific recombinase by a combined evolution- and structure-guided approach.
Nucleic Acids Res. 2013 Feb 1;41(4):2394-403. doi: 10.1093/nar/gks1308. Epub 2012 Dec 28.
8
Mg2+ in the major groove modulates B-DNA structure and dynamics.
PLoS One. 2012;7(7):e41704. doi: 10.1371/journal.pone.0041704. Epub 2012 Jul 23.
9
Sequence-specific ultrasonic cleavage of DNA.
Biophys J. 2011 Jan 5;100(1):117-25. doi: 10.1016/j.bpj.2010.10.052.

本文引用的文献

2
De novo protein structure generation from incomplete chemical shift assignments.
J Biomol NMR. 2009 Feb;43(2):63-78. doi: 10.1007/s10858-008-9288-5. Epub 2008 Nov 26.
4
Conformational signatures of 13C chemical shifts in RNA ribose.
J Biomol NMR. 2008 Oct;42(2):139-42. doi: 10.1007/s10858-008-9271-1. Epub 2008 Sep 20.
5
Quantum chemical 13C(alpha) chemical shift calculations for protein NMR structure determination, refinement, and validation.
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14389-94. doi: 10.1073/pnas.0807105105. Epub 2008 Sep 11.
6
31P NMR investigation of backbone dynamics in DNA binding sites.
J Phys Chem B. 2009 Mar 5;113(9):2596-603. doi: 10.1021/jp711203m.
7
Importance of accurate DNA structures in solution: the Jun-Fos model.
J Mol Biol. 2008 Oct 17;382(4):956-70. doi: 10.1016/j.jmb.2008.07.047. Epub 2008 Jul 25.
8
CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence data.
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W496-502. doi: 10.1093/nar/gkn305. Epub 2008 May 30.
9
Consistent blind protein structure generation from NMR chemical shift data.
Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4685-90. doi: 10.1073/pnas.0800256105. Epub 2008 Mar 7.
10
Pressure-induced changes in the solution structure of the GB1 domain of protein G.
Proteins. 2008 May 15;71(3):1432-40. doi: 10.1002/prot.21832.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验