Suppr超能文献

细胞内化合物的微流控单细胞分析

Microfluidic single-cell analysis of intracellular compounds.

作者信息

Chao Tzu-Chiao, Ros Alexandra

机构信息

Department of Chemistry and Biochemistry, Arizona State University, Box 871604, Tempe, AZ 85287-1604, USA.

出版信息

J R Soc Interface. 2008 Oct 6;5 Suppl 2(Suppl 2):S139-50. doi: 10.1098/rsif.2008.0233.focus.

Abstract

Biological analyses traditionally probe cell ensembles in the range of 103-106 cells, thereby completely averaging over relevant individual cell responses, such as differences in cell proliferation, responses to external stimuli or disease onset. In past years, this fact has been realized and increasing interest has evolved for single-cell analytical methods, which could give exciting new insights into genomics, proteomics, transcriptomics and systems biology. Microfluidic or lab-on-a-chip devices are the method of choice for single-cell analytical tools as they allow the integration of a variety of necessary process steps involved in single-cell analysis, such as selection, navigation, positioning or lysis of single cells as well as separation and detection of cellular analytes. Along with this advantageous integration, microfluidic devices confine single cells in compartments near their intrinsic volume, thus minimizing dilution effects and increasing detection sensitivity. This review overviews the developments and achievements of microfluidic single-cell analysis of intracellular compounds in the past few years, from proof-of-principle devices to applications demonstrating a high biological relevance.

摘要

传统的生物学分析方法通常对10³至10⁶个细胞的群体进行检测,从而完全平均了相关的单个细胞反应,如细胞增殖差异、对外界刺激的反应或疾病发作情况。在过去几年里,人们已经认识到这一事实,并且对单细胞分析方法的兴趣与日俱增,这些方法可能会为基因组学、蛋白质组学、转录组学和系统生物学带来令人兴奋的新见解。微流控或芯片实验室设备是单细胞分析工具的首选方法,因为它们能够集成单细胞分析中涉及的各种必要处理步骤,例如单细胞的选择、导航、定位或裂解,以及细胞分析物的分离和检测。伴随着这种有利的集成,微流控设备将单个细胞限制在接近其固有体积的小室中,从而将稀释效应降至最低并提高检测灵敏度。本文综述了过去几年微流控单细胞分析细胞内化合物的发展和成就,从原理验证设备到具有高度生物学相关性的应用。

相似文献

1
Microfluidic single-cell analysis of intracellular compounds.
J R Soc Interface. 2008 Oct 6;5 Suppl 2(Suppl 2):S139-50. doi: 10.1098/rsif.2008.0233.focus.
3
Microfluidic platforms for single-cell analysis.
Annu Rev Biomed Eng. 2010 Aug 15;12:187-201. doi: 10.1146/annurev-bioeng-070909-105238.
4
Electroporation of cells in microfluidic devices: a review.
Anal Bioanal Chem. 2006 Jun;385(3):474-85. doi: 10.1007/s00216-006-0327-3. Epub 2006 Mar 14.
5
Bioanalysis in structured microfluidic systems.
Electrophoresis. 2006 Jul;27(13):2651-8. doi: 10.1002/elps.200500923.
6
Thermoplastic microfluidic devices and their applications in protein and DNA analysis.
Analyst. 2011 Apr 7;136(7):1288-97. doi: 10.1039/c0an00969e. Epub 2011 Jan 28.
8
Microfluidic chip electrophoresis for biochemical analysis.
J Sep Sci. 2020 Jan;43(1):258-270. doi: 10.1002/jssc.201900758. Epub 2019 Nov 12.
9
Single cell electroporation using microfluidic devices.
Methods Mol Biol. 2012;853:65-82. doi: 10.1007/978-1-61779-567-1_7.
10
Chemical cytometry on microfluidic chips.
Electrophoresis. 2008 May;29(9):1775-86. doi: 10.1002/elps.200700561.

引用本文的文献

2
Integrating optical and electrical sensing with machine learning for advanced particle characterization.
Biomed Microdevices. 2024 May 23;26(2):25. doi: 10.1007/s10544-024-00707-0.
4
Modular microfluidics for life sciences.
J Nanobiotechnology. 2023 Mar 11;21(1):85. doi: 10.1186/s12951-023-01846-x.
5
Recent advances for cancer detection and treatment by microfluidic technology, review and update.
Biol Proced Online. 2022 Apr 28;24(1):5. doi: 10.1186/s12575-022-00166-y.
6
Mechanically Induced Cavitation in Biological Systems.
Life (Basel). 2021 Jun 10;11(6):546. doi: 10.3390/life11060546.
7
Microfluidic devices for the detection of viruses: aspects of emergency fabrication during the COVID-19 pandemic and other outbreaks.
Proc Math Phys Eng Sci. 2020 Nov;476(2243):20200398. doi: 10.1098/rspa.2020.0398. Epub 2020 Nov 4.
8
Internalization and accumulation of model lignin breakdown products in bacteria and fungi.
Biotechnol Biofuels. 2019 Jul 3;12:175. doi: 10.1186/s13068-019-1494-8. eCollection 2019.

本文引用的文献

1
Soft Lithography.
Angew Chem Int Ed Engl. 1998 Mar 16;37(5):550-575. doi: 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G.
3
Integrating whole transcriptome assays on a lab-on-a-chip for single cell gene profiling.
Lab Chip. 2008 Mar;8(3):443-50. doi: 10.1039/b716543a. Epub 2008 Jan 31.
4
A microfluidic processor for gene expression profiling of single human embryonic stem cells.
Lab Chip. 2008 Jan;8(1):68-74. doi: 10.1039/b712116d. Epub 2007 Nov 2.
7
Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement.
Lab Chip. 2007 Dec;7(12):1666-72. doi: 10.1039/b712897p. Epub 2007 Sep 14.
8
Mass spectrometric imaging of peptide release from neuronal cells within microfluidic devices.
Lab Chip. 2007 Nov;7(11):1454-60. doi: 10.1039/b706940e. Epub 2007 Aug 15.
9
Impedimetric and optical interrogation of single cells in a microfluidic device for real-time viability and chemical response assessment.
Biosens Bioelectron. 2008 Jan 18;23(6):845-51. doi: 10.1016/j.bios.2007.08.022. Epub 2007 Sep 6.
10
Nanoliter reactors improve multiple displacement amplification of genomes from single cells.
PLoS Genet. 2007 Sep;3(9):1702-8. doi: 10.1371/journal.pgen.0030155.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验