Suppr超能文献

肾近端小管微绒毛的机械感觉功能。

Mechanosensory function of microvilli of the kidney proximal tubule.

作者信息

Du Zhaopeng, Duan Yi, Yan QingShang, Weinstein Alan M, Weinbaum Sheldon, Wang Tong

机构信息

Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520-8026, USA.

出版信息

Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):13068-73. doi: 10.1073/pnas.0405179101. Epub 2004 Aug 19.

Abstract

Normal variations in glomerular filtration induce proportional changes in proximal tubule Na+ reabsorption. This "glomerulotubular balance" derives from flow dependence of Na+ uptake across luminal cell membranes; however, the underlying physical mechanism is unknown. Our hypothesis is that flow-dependent reabsorption is an autoregulatory mechanism that is independent of neural and hormonal systems. It is signaled by the hydrodynamic torque (bending moment) on epithelial microvilli. Such signals need to be transmitted to the terminal web to modulate Na+-H+-exchange activity. To investigate this hypothesis, we examined Na+ transport and tubular diameter in response to different flow rates during the microperfusion of isolated S2 proximal tubules from mouse kidneys. The data were analyzed by using a mathematical model to estimate the microvillous torque as function of flow. In this model, increases in luminal diameter have the effect of blunting the impact of flow velocity on microvillous shear stress and, thus, microvillous torque. We found that variations in microvillous torque produce nearly identical fractional changes in Na+ reabsorption. Furthermore, the flow-dependent Na+ transport is increased by increasing luminal fluid viscosity, diminished in Na+-H+ exchanger isoform 3 knockout mice, and abolished by nontoxic disruption of the actin cytoskeleton. These data support our hypothesis that the "brush-border" microvilli serve a mechanosensory function in which fluid dynamic torque is transmitted to the actin cytoskeleton and modulates Na+ absorption in kidney proximal tubules.

摘要

肾小球滤过的正常变化会引起近端小管钠重吸收的相应变化。这种“球管平衡”源于跨管腔细胞膜钠摄取的流量依赖性;然而,其潜在的物理机制尚不清楚。我们的假设是,流量依赖性重吸收是一种独立于神经和激素系统的自身调节机制。它由上皮微绒毛上的流体动力扭矩(弯矩)发出信号。此类信号需要传递至终末网以调节钠氢交换活性。为了验证这一假设,我们在对分离的小鼠肾脏S2近端小管进行微量灌注期间,检测了不同流速下的钠转运和管径。通过使用数学模型分析数据,以估计作为流量函数的微绒毛扭矩。在该模型中,管腔直径增加会减弱流速对微绒毛剪切应力以及微绒毛扭矩的影响。我们发现,微绒毛扭矩的变化会使钠重吸收产生几乎相同的分数变化。此外,增加管腔液粘度可增强流量依赖性钠转运,钠氢交换体同工型3基因敲除小鼠中的该转运则减弱,而肌动蛋白细胞骨架的无毒破坏可消除该转运。这些数据支持了我们的假设,即“刷状缘”微绒毛具有机械感觉功能,其中流体动力扭矩传递至肌动蛋白细胞骨架并调节肾近端小管中的钠吸收。

相似文献

1
Mechanosensory function of microvilli of the kidney proximal tubule.肾近端小管微绒毛的机械感觉功能。
Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):13068-73. doi: 10.1073/pnas.0405179101. Epub 2004 Aug 19.
4
A hydrodynamic mechanosensory hypothesis for brush border microvilli.一种关于刷状缘微绒毛的流体动力机械传感假说。
Am J Physiol Renal Physiol. 2000 Oct;279(4):F698-712. doi: 10.1152/ajprenal.2000.279.4.F698.
5
Flow-dependent transport in a mathematical model of rat proximal tubule.大鼠近端肾小管数学模型中的流量依赖性转运
Am J Physiol Renal Physiol. 2007 Apr;292(4):F1164-81. doi: 10.1152/ajprenal.00392.2006. Epub 2007 Jan 9.

引用本文的文献

1
Charge barriers in the kidney elimination of engineered nanoparticles.工程纳米颗粒在肾脏消除中的荷质比壁垒。
Proc Natl Acad Sci U S A. 2024 Jun 4;121(23):e2403131121. doi: 10.1073/pnas.2403131121. Epub 2024 May 28.
3
The morphological and functional diversity of apical microvilli.顶微绒毛的形态和功能多样性。
J Anat. 2023 Mar;242(3):327-353. doi: 10.1111/joa.13781. Epub 2022 Oct 25.

本文引用的文献

1
The renal cell primary cilium functions as a flow sensor.肾细胞的初级纤毛起着流量传感器的作用。
Curr Opin Nephrol Hypertens. 2003 Sep;12(5):517-20. doi: 10.1097/00041552-200309000-00006.
6
Epithelial Na(+) channels are regulated by flow.上皮钠通道受流量调节。
Am J Physiol Renal Physiol. 2001 Jun;280(6):F1010-8. doi: 10.1152/ajprenal.2001.280.6.F1010.
7
A hydrodynamic mechanosensory hypothesis for brush border microvilli.一种关于刷状缘微绒毛的流体动力机械传感假说。
Am J Physiol Renal Physiol. 2000 Oct;279(4):F698-712. doi: 10.1152/ajprenal.2000.279.4.F698.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验