Perez-Jimenez Raul, Wiita Arun P, Rodriguez-Larrea David, Kosuri Pallav, Gavira Jose A, Sanchez-Ruiz Jose M, Fernandez Julio M
Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
J Biol Chem. 2008 Oct 3;283(40):27121-9. doi: 10.1074/jbc.M803746200. Epub 2008 Aug 7.
Understanding how the catalytic mechanisms of enzymes are optimized through evolution remains a major challenge in molecular biology. The concept of co-evolution implicates that compensatory mutations occur to preserve the structure and function of proteins. We have combined statistical analysis of protein sequences with the sensitivity of single molecule force-clamp spectroscopy to probe how catalysis is affected by structurally distant correlated mutations in Escherichia coli thioredoxin. Our findings show that evolutionary anti-correlated mutations have an inhibitory effect on enzyme catalysis, whereas positively correlated mutations rescue the catalytic activity. We interpret these results in terms of an evolutionary tuning of both the enzyme-substrate binding process and the chemistry of the active site. Our results constitute a direct observation of distant residue co-evolution in enzyme catalysis.
了解酶的催化机制如何通过进化得到优化仍然是分子生物学中的一个重大挑战。协同进化的概念意味着会发生补偿性突变以维持蛋白质的结构和功能。我们将蛋白质序列的统计分析与单分子力钳光谱的灵敏度相结合,以探究大肠杆菌硫氧还蛋白中结构上相距较远的相关突变如何影响催化作用。我们的研究结果表明,进化上的反相关突变对酶催化有抑制作用,而正相关突变则能挽救催化活性。我们从酶 - 底物结合过程和活性位点化学性质的进化调节角度来解释这些结果。我们的结果构成了对酶催化中远距离残基协同进化的直接观察。